Added Starlark scripting language for SCRIPT blocks.

This commit is contained in:
Mattias Hansson 2025-11-06 06:57:06 +01:00
parent d09a039697
commit af315647bd
333 changed files with 186530 additions and 6 deletions

7
go.mod
View file

@ -2,4 +2,9 @@ module c65gm
go 1.25.1
require github.com/armon/go-radix v1.0.0
require (
github.com/armon/go-radix v1.0.0
go.starlark.net v0.0.0-20251029211736-7849196f18cf
)
require golang.org/x/sys v0.0.0-20220715151400-c0bba94af5f8 // indirect

8
go.sum
View file

@ -1,2 +1,10 @@
github.com/armon/go-radix v1.0.0 h1:F4z6KzEeeQIMeLFa97iZU6vupzoecKdU5TX24SNppXI=
github.com/armon/go-radix v1.0.0/go.mod h1:ufUuZ+zHj4x4TnLV4JWEpy2hxWSpsRywHrMgIH9cCH8=
github.com/google/go-cmp v0.5.5 h1:Khx7svrCpmxxtHBq5j2mp/xVjsi8hQMfNLvJFAlrGgU=
github.com/google/go-cmp v0.5.5/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
go.starlark.net v0.0.0-20251029211736-7849196f18cf h1:iyRnW9PWEZDYnIKzNjW3K9Xa+/o19k/cLLwIkKGDEYg=
go.starlark.net v0.0.0-20251029211736-7849196f18cf/go.mod h1:YKMCv9b1WrfWmeqdV5MAuEHWsu5iC+fe6kYl2sQjdI8=
golang.org/x/sys v0.0.0-20220715151400-c0bba94af5f8 h1:0A+M6Uqn+Eje4kHMK80dtF3JCXC4ykBgQG4Fe06QRhQ=
golang.org/x/sys v0.0.0-20220715151400-c0bba94af5f8/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
google.golang.org/protobuf v1.33.0 h1:uNO2rsAINq/JlFpSdYEKIZ0uKD/R9cpdv0T+yoGwGmI=
google.golang.org/protobuf v1.33.0/go.mod h1:c6P6GXX6sHbq/GpV6MGZEdwhWPcYBgnhAHhKbcUYpos=

View file

@ -35,15 +35,25 @@ func (c *Compiler) Registry() *CommandRegistry {
func (c *Compiler) Compile(lines []preproc.Line) ([]string, error) {
var codeOutput []string
var lastKind = preproc.Source
var scriptBuffer []string
for _, line := range lines {
// Detect kind transitions and emit markers
if line.Kind != lastKind {
// Close previous block
// Execute and close previous Script block
if lastKind == preproc.Script {
scriptOutput, err := executeScript(scriptBuffer, c.ctx)
if err != nil {
return nil, fmt.Errorf("script execution failed: %w", err)
}
codeOutput = append(codeOutput, scriptOutput...)
scriptBuffer = nil
codeOutput = append(codeOutput, "; ENDSCRIPT")
}
// Close previous Assembler block
if lastKind == preproc.Assembler {
codeOutput = append(codeOutput, "; ENDASM")
} else if lastKind == preproc.Script {
codeOutput = append(codeOutput, "; ENDSCRIPT")
}
// Open new block
@ -56,7 +66,7 @@ func (c *Compiler) Compile(lines []preproc.Line) ([]string, error) {
lastKind = line.Kind
}
// Skip non-source lines (assembler and script handled differently)
// Handle non-source lines
if line.Kind != preproc.Source {
if line.Kind == preproc.Assembler {
// Expand |varname| -> scoped_varname for local variables in ASM blocks
@ -77,8 +87,10 @@ func (c *Compiler) Compile(lines []preproc.Line) ([]string, error) {
text = text[:start] + expandedName + text[end+1:]
}
codeOutput = append(codeOutput, text)
} else if line.Kind == preproc.Script {
// Collect script lines for execution
scriptBuffer = append(scriptBuffer, line.Text)
}
// Script lines ignored for now
continue
}

View file

@ -0,0 +1,77 @@
package compiler
import (
"bytes"
"strings"
"go.starlark.net/lib/math"
"go.starlark.net/starlark"
)
// executeScript runs a Starlark script and returns the output lines
func executeScript(scriptLines []string, ctx *CompilerContext) ([]string, error) {
// Join script lines
scriptText := strings.Join(scriptLines, "\n")
// Expand |varname| -> actual variable names
scriptText = expandVariables(scriptText, ctx)
// Wrap in function (Starlark requires control flow inside functions)
wrappedScript := "def _main():\n"
for _, line := range strings.Split(scriptText, "\n") {
wrappedScript += " " + line + "\n"
}
wrappedScript += "_main()\n"
// Capture print output
var output bytes.Buffer
thread := &starlark.Thread{
Print: func(_ *starlark.Thread, msg string) {
output.WriteString(msg)
output.WriteString("\n")
},
}
// Set execution limit (prevent infinite loops)
thread.SetMaxExecutionSteps(1000000) // 1M steps
// Predeclared functions (math module)
predeclared := starlark.StringDict{
"math": math.Module,
}
// Execute
_, err := starlark.ExecFile(thread, "script.star", wrappedScript, predeclared)
if err != nil {
return nil, err
}
// Split output into lines for assembly
outputStr := output.String()
if outputStr == "" {
return []string{}, nil
}
lines := strings.Split(strings.TrimRight(outputStr, "\n"), "\n")
return lines, nil
}
// expandVariables replaces |varname| with expanded variable names from symbol table
func expandVariables(text string, ctx *CompilerContext) string {
result := text
for {
start := strings.IndexByte(result, '|')
if start == -1 {
break
}
end := strings.IndexByte(result[start+1:], '|')
if end == -1 {
break // unclosed, let script fail
}
end += start + 1
varName := result[start+1 : end]
expandedName := ctx.SymbolTable.ExpandName(varName, ctx.CurrentScope())
result = result[:start] + expandedName + result[end+1:]
}
return result
}

29
vendor/go.starlark.net/LICENSE generated vendored Normal file
View file

@ -0,0 +1,29 @@
Copyright (c) 2017 The Bazel Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the
distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1927
vendor/go.starlark.net/internal/compile/compile.go generated vendored Normal file

File diff suppressed because it is too large Load diff

399
vendor/go.starlark.net/internal/compile/serial.go generated vendored Normal file
View file

@ -0,0 +1,399 @@
package compile
// This file defines functions to read and write a compile.Program to a file.
//
// It is the client's responsibility to avoid version skew between the
// compiler used to produce a file and the interpreter that consumes it.
// The version number is provided as a constant.
// Incompatible protocol changes should also increment the version number.
//
// Encoding
//
// Program:
// "sky!" [4]byte # magic number
// str uint32le # offset of <strings> section
// version varint # must match Version
// filename string
// numloads varint
// loads []Ident
// numnames varint
// names []string
// numconsts varint
// consts []Constant
// numglobals varint
// globals []Ident
// toplevel Funcode
// numfuncs varint
// funcs []Funcode
// recursion varint (0 or 1)
// <strings> []byte # concatenation of all referenced strings
// EOF
//
// Funcode:
// id Ident
// code []byte
// pclinetablen varint
// pclinetab []varint
// numlocals varint
// locals []Ident
// numcells varint
// cells []int
// numfreevars varint
// freevar []Ident
// maxstack varint
// numparams varint
// numkwonlyparams varint
// hasvarargs varint (0 or 1)
// haskwargs varint (0 or 1)
//
// Ident:
// filename string
// line, col varint
//
// Constant: # type data
// type varint # 0=string string
// data ... # 1=bytes string
// # 2=int varint
// # 3=float varint (bits as uint64)
// # 4=bigint string (decimal ASCII text)
//
// The encoding starts with a four-byte magic number.
// The next four bytes are a little-endian uint32
// that provides the offset of the string section
// at the end of the file, which contains the ordered
// concatenation of all strings referenced by the
// program. This design permits the decoder to read
// the first and second parts of the file into different
// memory allocations: the first (the encoded program)
// is transient, but the second (the strings) persists
// for the life of the Program.
//
// Within the encoded program, all strings are referred
// to by their length. As the encoder and decoder process
// the entire file sequentially, they are in lock step,
// so the start offset of each string is implicit.
//
// Program.Code is represented as a []byte slice to permit
// modification when breakpoints are set. All other strings
// are represented as strings. They all (unsafely) share the
// same backing byte slice.
//
// Aside from the str field, all integers are encoded as varints.
import (
"encoding/binary"
"fmt"
"math"
"math/big"
debugpkg "runtime/debug"
"unsafe"
"go.starlark.net/syntax"
)
const magic = "!sky"
// Encode encodes a compiled Starlark program.
func (prog *Program) Encode() []byte {
var e encoder
e.p = append(e.p, magic...)
e.p = append(e.p, "????"...) // string data offset; filled in later
e.int(Version)
e.string(prog.Toplevel.Pos.Filename())
e.bindings(prog.Loads)
e.int(len(prog.Names))
for _, name := range prog.Names {
e.string(name)
}
e.int(len(prog.Constants))
for _, c := range prog.Constants {
switch c := c.(type) {
case string:
e.int(0)
e.string(c)
case Bytes:
e.int(1)
e.string(string(c))
case int64:
e.int(2)
e.int64(c)
case float64:
e.int(3)
e.uint64(math.Float64bits(c))
case *big.Int:
e.int(4)
e.string(c.Text(10))
}
}
e.bindings(prog.Globals)
e.function(prog.Toplevel)
e.int(len(prog.Functions))
for _, fn := range prog.Functions {
e.function(fn)
}
e.int(b2i(prog.Recursion))
// Patch in the offset of the string data section.
binary.LittleEndian.PutUint32(e.p[4:8], uint32(len(e.p)))
return append(e.p, e.s...)
}
type encoder struct {
p []byte // encoded program
s []byte // strings
tmp [binary.MaxVarintLen64]byte
}
func (e *encoder) int(x int) {
e.int64(int64(x))
}
func (e *encoder) int64(x int64) {
n := binary.PutVarint(e.tmp[:], x)
e.p = append(e.p, e.tmp[:n]...)
}
func (e *encoder) uint64(x uint64) {
n := binary.PutUvarint(e.tmp[:], x)
e.p = append(e.p, e.tmp[:n]...)
}
func (e *encoder) string(s string) {
e.int(len(s))
e.s = append(e.s, s...)
}
func (e *encoder) bytes(b []byte) {
e.int(len(b))
e.s = append(e.s, b...)
}
func (e *encoder) binding(bind Binding) {
e.string(bind.Name)
e.int(int(bind.Pos.Line))
e.int(int(bind.Pos.Col))
}
func (e *encoder) bindings(binds []Binding) {
e.int(len(binds))
for _, bind := range binds {
e.binding(bind)
}
}
func (e *encoder) function(fn *Funcode) {
e.binding(Binding{fn.Name, fn.Pos})
e.string(fn.Doc)
e.bytes(fn.Code)
e.int(len(fn.pclinetab))
for _, x := range fn.pclinetab {
e.int64(int64(x))
}
e.bindings(fn.Locals)
e.int(len(fn.Cells))
for _, index := range fn.Cells {
e.int(index)
}
e.bindings(fn.FreeVars)
e.int(fn.MaxStack)
e.int(fn.NumParams)
e.int(fn.NumKwonlyParams)
e.int(b2i(fn.HasVarargs))
e.int(b2i(fn.HasKwargs))
}
func b2i(b bool) int {
if b {
return 1
} else {
return 0
}
}
// DecodeProgram decodes a compiled Starlark program from data.
func DecodeProgram(data []byte) (_ *Program, err error) {
if len(data) < len(magic) {
return nil, fmt.Errorf("not a compiled module: no magic number")
}
if got := string(data[:4]); got != magic {
return nil, fmt.Errorf("not a compiled module: got magic number %q, want %q",
got, magic)
}
defer func() {
if x := recover(); x != nil {
debugpkg.PrintStack()
err = fmt.Errorf("internal error while decoding program: %v", x)
}
}()
offset := binary.LittleEndian.Uint32(data[4:8])
d := decoder{
p: data[8:offset],
s: append([]byte(nil), data[offset:]...), // allocate a copy, which will persist
}
if v := d.int(); v != Version {
return nil, fmt.Errorf("version mismatch: read %d, want %d", v, Version)
}
filename := d.string()
d.filename = &filename
loads := d.bindings()
names := make([]string, d.int())
for i := range names {
names[i] = d.string()
}
// constants
constants := make([]interface{}, d.int())
for i := range constants {
var c interface{}
switch d.int() {
case 0:
c = d.string()
case 1:
c = Bytes(d.string())
case 2:
c = d.int64()
case 3:
c = math.Float64frombits(d.uint64())
case 4:
c, _ = new(big.Int).SetString(d.string(), 10)
}
constants[i] = c
}
globals := d.bindings()
toplevel := d.function()
funcs := make([]*Funcode, d.int())
for i := range funcs {
funcs[i] = d.function()
}
recursion := d.int() != 0
prog := &Program{
Loads: loads,
Names: names,
Constants: constants,
Globals: globals,
Functions: funcs,
Toplevel: toplevel,
Recursion: recursion,
}
toplevel.Prog = prog
for _, f := range funcs {
f.Prog = prog
}
if len(d.p)+len(d.s) > 0 {
return nil, fmt.Errorf("internal error: unconsumed data during decoding")
}
return prog, nil
}
type decoder struct {
p []byte // encoded program
s []byte // strings
filename *string // (indirect to avoid keeping decoder live)
}
func (d *decoder) int() int {
return int(d.int64())
}
func (d *decoder) int64() int64 {
x, len := binary.Varint(d.p[:])
d.p = d.p[len:]
return x
}
func (d *decoder) uint64() uint64 {
x, len := binary.Uvarint(d.p[:])
d.p = d.p[len:]
return x
}
func (d *decoder) string() (s string) {
if slice := d.bytes(); len(slice) > 0 {
// Avoid a memory allocation for each string
// by unsafely aliasing slice.
type string struct {
data *byte
len int
}
ptr := (*string)(unsafe.Pointer(&s))
ptr.data = &slice[0]
ptr.len = len(slice)
}
return s
}
func (d *decoder) bytes() []byte {
len := d.int()
r := d.s[:len:len]
d.s = d.s[len:]
return r
}
func (d *decoder) binding() Binding {
name := d.string()
line := int32(d.int())
col := int32(d.int())
return Binding{Name: name, Pos: syntax.MakePosition(d.filename, line, col)}
}
func (d *decoder) bindings() []Binding {
bindings := make([]Binding, d.int())
for i := range bindings {
bindings[i] = d.binding()
}
return bindings
}
func (d *decoder) ints() []int {
ints := make([]int, d.int())
for i := range ints {
ints[i] = d.int()
}
return ints
}
func (d *decoder) bool() bool { return d.int() != 0 }
func (d *decoder) function() *Funcode {
id := d.binding()
doc := d.string()
code := d.bytes()
pclinetab := make([]uint16, d.int())
for i := range pclinetab {
pclinetab[i] = uint16(d.int())
}
locals := d.bindings()
cells := d.ints()
freevars := d.bindings()
maxStack := d.int()
numParams := d.int()
numKwonlyParams := d.int()
hasVarargs := d.int() != 0
hasKwargs := d.int() != 0
return &Funcode{
// Prog is filled in later.
Pos: id.Pos,
Name: id.Name,
Doc: doc,
Code: code,
pclinetab: pclinetab,
Locals: locals,
Cells: cells,
FreeVars: freevars,
MaxStack: maxStack,
NumParams: numParams,
NumKwonlyParams: numKwonlyParams,
HasVarargs: hasVarargs,
HasKwargs: hasKwargs,
}
}

115
vendor/go.starlark.net/internal/spell/spell.go generated vendored Normal file
View file

@ -0,0 +1,115 @@
// Package spell file defines a simple spelling checker for use in attribute errors
// such as "no such field .foo; did you mean .food?".
package spell
import (
"strings"
"unicode"
)
// Nearest returns the element of candidates
// nearest to x using the Levenshtein metric,
// or "" if none were promising.
func Nearest(x string, candidates []string) string {
// Ignore underscores and case when matching.
fold := func(s string) string {
return strings.Map(func(r rune) rune {
if r == '_' {
return -1
}
return unicode.ToLower(r)
}, s)
}
x = fold(x)
var best string
bestD := (len(x) + 1) / 2 // allow up to 50% typos
for _, c := range candidates {
d := levenshtein(x, fold(c), bestD)
if d < bestD {
bestD = d
best = c
}
}
return best
}
// levenshtein returns the non-negative Levenshtein edit distance
// between the byte strings x and y.
//
// If the computed distance exceeds max,
// the function may return early with an approximate value > max.
func levenshtein(x, y string, max int) int {
// This implementation is derived from one by Laurent Le Brun in
// Bazel that uses the single-row space efficiency trick
// described at bitbucket.org/clearer/iosifovich.
// Let x be the shorter string.
if len(x) > len(y) {
x, y = y, x
}
// Remove common prefix.
for i := 0; i < len(x); i++ {
if x[i] != y[i] {
x = x[i:]
y = y[i:]
break
}
}
if x == "" {
return len(y)
}
if d := abs(len(x) - len(y)); d > max {
return d // excessive length divergence
}
row := make([]int, len(y)+1)
for i := range row {
row[i] = i
}
for i := 1; i <= len(x); i++ {
row[0] = i
best := i
prev := i - 1
for j := 1; j <= len(y); j++ {
a := prev + b2i(x[i-1] != y[j-1]) // substitution
b := 1 + row[j-1] // deletion
c := 1 + row[j] // insertion
k := min(a, min(b, c))
prev, row[j] = row[j], k
best = min(best, k)
}
if best > max {
return best
}
}
return row[len(y)]
}
func b2i(b bool) int {
if b {
return 1
} else {
return 0
}
}
func min(x, y int) int {
if x < y {
return x
} else {
return y
}
}
func abs(x int) int {
if x >= 0 {
return x
} else {
return -x
}
}

205
vendor/go.starlark.net/lib/math/math.go generated vendored Normal file
View file

@ -0,0 +1,205 @@
// Copyright 2021 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package math provides basic constants and mathematical functions.
package math // import "go.starlark.net/lib/math"
import (
"errors"
"fmt"
"math"
"go.starlark.net/starlark"
"go.starlark.net/starlarkstruct"
)
// Module math is a Starlark module of math-related functions and constants.
// The module defines the following functions:
//
// ceil(x) - Returns the ceiling of x, the smallest integer greater than or equal to x.
// copysign(x, y) - Returns a value with the magnitude of x and the sign of y.
// fabs(x) - Returns the absolute value of x as float.
// floor(x) - Returns the floor of x, the largest integer less than or equal to x.
// mod(x, y) - Returns the floating-point remainder of x/y. The magnitude of the result is less than y and its sign agrees with that of x.
// pow(x, y) - Returns x**y, the base-x exponential of y.
// remainder(x, y) - Returns the IEEE 754 floating-point remainder of x/y.
// round(x) - Returns the nearest integer, rounding half away from zero.
//
// exp(x) - Returns e raised to the power x, where e = 2.718281… is the base of natural logarithms.
// sqrt(x) - Returns the square root of x.
//
// acos(x) - Returns the arc cosine of x, in radians.
// asin(x) - Returns the arc sine of x, in radians.
// atan(x) - Returns the arc tangent of x, in radians.
// atan2(y, x) - Returns atan(y / x), in radians.
// The result is between -pi and pi.
// The vector in the plane from the origin to point (x, y) makes this angle with the positive X axis.
// The point of atan2() is that the signs of both inputs are known to it, so it can compute the correct
// quadrant for the angle.
// For example, atan(1) and atan2(1, 1) are both pi/4, but atan2(-1, -1) is -3*pi/4.
// cos(x) - Returns the cosine of x, in radians.
// hypot(x, y) - Returns the Euclidean norm, sqrt(x*x + y*y). This is the length of the vector from the origin to point (x, y).
// sin(x) - Returns the sine of x, in radians.
// tan(x) - Returns the tangent of x, in radians.
//
// degrees(x) - Converts angle x from radians to degrees.
// radians(x) - Converts angle x from degrees to radians.
//
// acosh(x) - Returns the inverse hyperbolic cosine of x.
// asinh(x) - Returns the inverse hyperbolic sine of x.
// atanh(x) - Returns the inverse hyperbolic tangent of x.
// cosh(x) - Returns the hyperbolic cosine of x.
// sinh(x) - Returns the hyperbolic sine of x.
// tanh(x) - Returns the hyperbolic tangent of x.
//
// log(x, base) - Returns the logarithm of x in the given base, or natural logarithm by default.
//
// gamma(x) - Returns the Gamma function of x.
//
// All functions accept both int and float values as arguments.
//
// The module also defines approximations of the following constants:
//
// e - The base of natural logarithms, approximately 2.71828.
// pi - The ratio of a circle's circumference to its diameter, approximately 3.14159.
var Module = &starlarkstruct.Module{
Name: "math",
Members: starlark.StringDict{
"ceil": starlark.NewBuiltin("ceil", ceil),
"copysign": newBinaryBuiltin("copysign", math.Copysign),
"fabs": newUnaryBuiltin("fabs", math.Abs),
"floor": starlark.NewBuiltin("floor", floor),
"mod": newBinaryBuiltin("mod", math.Mod),
"pow": newBinaryBuiltin("pow", math.Pow),
"remainder": newBinaryBuiltin("remainder", math.Remainder),
"round": newUnaryBuiltin("round", math.Round),
"exp": newUnaryBuiltin("exp", math.Exp),
"sqrt": newUnaryBuiltin("sqrt", math.Sqrt),
"acos": newUnaryBuiltin("acos", math.Acos),
"asin": newUnaryBuiltin("asin", math.Asin),
"atan": newUnaryBuiltin("atan", math.Atan),
"atan2": newBinaryBuiltin("atan2", math.Atan2),
"cos": newUnaryBuiltin("cos", math.Cos),
"hypot": newBinaryBuiltin("hypot", math.Hypot),
"sin": newUnaryBuiltin("sin", math.Sin),
"tan": newUnaryBuiltin("tan", math.Tan),
"degrees": newUnaryBuiltin("degrees", degrees),
"radians": newUnaryBuiltin("radians", radians),
"acosh": newUnaryBuiltin("acosh", math.Acosh),
"asinh": newUnaryBuiltin("asinh", math.Asinh),
"atanh": newUnaryBuiltin("atanh", math.Atanh),
"cosh": newUnaryBuiltin("cosh", math.Cosh),
"sinh": newUnaryBuiltin("sinh", math.Sinh),
"tanh": newUnaryBuiltin("tanh", math.Tanh),
"log": starlark.NewBuiltin("log", log),
"gamma": newUnaryBuiltin("gamma", math.Gamma),
"e": starlark.Float(math.E),
"pi": starlark.Float(math.Pi),
},
}
// floatOrInt is an Unpacker that converts a Starlark int or float to Go's float64.
type floatOrInt float64
func (p *floatOrInt) Unpack(v starlark.Value) error {
switch v := v.(type) {
case starlark.Int:
*p = floatOrInt(v.Float())
return nil
case starlark.Float:
*p = floatOrInt(v)
return nil
}
return fmt.Errorf("got %s, want float or int", v.Type())
}
// newUnaryBuiltin wraps a unary floating-point Go function
// as a Starlark built-in that accepts int or float arguments.
func newUnaryBuiltin(name string, fn func(float64) float64) *starlark.Builtin {
return starlark.NewBuiltin(name, func(thread *starlark.Thread, b *starlark.Builtin, args starlark.Tuple, kwargs []starlark.Tuple) (starlark.Value, error) {
var x floatOrInt
if err := starlark.UnpackPositionalArgs(name, args, kwargs, 1, &x); err != nil {
return nil, err
}
return starlark.Float(fn(float64(x))), nil
})
}
// newBinaryBuiltin wraps a binary floating-point Go function
// as a Starlark built-in that accepts int or float arguments.
func newBinaryBuiltin(name string, fn func(float64, float64) float64) *starlark.Builtin {
return starlark.NewBuiltin(name, func(thread *starlark.Thread, b *starlark.Builtin, args starlark.Tuple, kwargs []starlark.Tuple) (starlark.Value, error) {
var x, y floatOrInt
if err := starlark.UnpackPositionalArgs(name, args, kwargs, 2, &x, &y); err != nil {
return nil, err
}
return starlark.Float(fn(float64(x), float64(y))), nil
})
}
// log wraps the Log function
//
// as a Starlark built-in that accepts int or float arguments.
func log(thread *starlark.Thread, b *starlark.Builtin, args starlark.Tuple, kwargs []starlark.Tuple) (starlark.Value, error) {
var (
x floatOrInt
base floatOrInt = math.E
)
if err := starlark.UnpackPositionalArgs("log", args, kwargs, 1, &x, &base); err != nil {
return nil, err
}
if base == 1 {
return nil, errors.New("division by zero")
}
return starlark.Float(math.Log(float64(x)) / math.Log(float64(base))), nil
}
func ceil(thread *starlark.Thread, _ *starlark.Builtin, args starlark.Tuple, kwargs []starlark.Tuple) (starlark.Value, error) {
var x starlark.Value
if err := starlark.UnpackPositionalArgs("ceil", args, kwargs, 1, &x); err != nil {
return nil, err
}
switch t := x.(type) {
case starlark.Int:
return t, nil
case starlark.Float:
return starlark.NumberToInt(starlark.Float(math.Ceil(float64(t))))
}
return nil, fmt.Errorf("got %s, want float or int", x.Type())
}
func floor(thread *starlark.Thread, _ *starlark.Builtin, args starlark.Tuple, kwargs []starlark.Tuple) (starlark.Value, error) {
var x starlark.Value
if err := starlark.UnpackPositionalArgs("floor", args, kwargs, 1, &x); err != nil {
return nil, err
}
switch t := x.(type) {
case starlark.Int:
return t, nil
case starlark.Float:
return starlark.NumberToInt(starlark.Float(math.Floor(float64(t))))
}
return nil, fmt.Errorf("got %s, want float or int", x.Type())
}
func degrees(x float64) float64 {
return 360 * x / (2 * math.Pi)
}
func radians(x float64) float64 {
return 2 * math.Pi * x / 360
}

74
vendor/go.starlark.net/resolve/binding.go generated vendored Normal file
View file

@ -0,0 +1,74 @@
// Copyright 2019 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package resolve
import "go.starlark.net/syntax"
// This file defines resolver data types saved in the syntax tree.
// We cannot guarantee API stability for these types
// as they are closely tied to the implementation.
// A Binding contains resolver information about an identifier.
// The resolver populates the Binding field of each syntax.Identifier.
// The Binding ties together all identifiers that denote the same variable.
type Binding struct {
Scope Scope
// Index records the index into the enclosing
// - {DefStmt,File}.Locals, if Scope==Local
// - DefStmt.FreeVars, if Scope==Free
// - File.Globals, if Scope==Global.
// It is zero if Scope is Predeclared, Universal, or Undefined.
Index int
First *syntax.Ident // first binding use (iff Scope==Local/Free/Global)
}
// The Scope of Binding indicates what kind of scope it has.
type Scope uint8
const (
Undefined Scope = iota // name is not defined
Local // name is local to its function or file
Cell // name is function-local but shared with a nested function
Free // name is cell of some enclosing function
Global // name is global to module
Predeclared // name is predeclared for this module (e.g. glob)
Universal // name is universal (e.g. len)
)
var scopeNames = [...]string{
Undefined: "undefined",
Local: "local",
Cell: "cell",
Free: "free",
Global: "global",
Predeclared: "predeclared",
Universal: "universal",
}
func (scope Scope) String() string { return scopeNames[scope] }
// A Module contains resolver information about a file.
// The resolver populates the Module field of each syntax.File.
type Module struct {
Locals []*Binding // the file's (comprehension-)local variables
Globals []*Binding // the file's global variables
}
// A Function contains resolver information about a named or anonymous function.
// The resolver populates the Function field of each syntax.DefStmt and syntax.LambdaExpr.
type Function struct {
Pos syntax.Position // of DEF or LAMBDA
Name string // name of def, or "lambda"
Params []syntax.Expr // param = ident | ident=expr | * | *ident | **ident
Body []syntax.Stmt // contains synthetic 'return expr' for lambda
HasVarargs bool // whether params includes *args (convenience)
HasKwargs bool // whether params includes **kwargs (convenience)
NumKwonlyParams int // number of keyword-only optional parameters
Locals []*Binding // this function's local/cell variables, parameters first
FreeVars []*Binding // enclosing cells to capture in closure
}

996
vendor/go.starlark.net/resolve/resolve.go generated vendored Normal file
View file

@ -0,0 +1,996 @@
// Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package resolve defines a name-resolution pass for Starlark abstract
// syntax trees.
//
// The resolver sets the Locals and FreeVars arrays of each DefStmt and
// the LocalIndex field of each syntax.Ident that refers to a local or
// free variable. It also sets the Locals array of a File for locals
// bound by top-level comprehensions and load statements.
// Identifiers for global variables do not get an index.
package resolve // import "go.starlark.net/resolve"
// All references to names are statically resolved. Names may be
// predeclared, global, or local to a function or file.
// File-local variables include those bound by top-level comprehensions
// and by load statements. ("Top-level" means "outside of any function".)
// The resolver maps each global name to a small integer and each local
// name to a small integer; these integers enable a fast and compact
// representation of globals and locals in the evaluator.
//
// As an optimization, the resolver classifies each predeclared name as
// either universal (e.g. None, len) or per-module (e.g. glob in Bazel's
// build language), enabling the evaluator to share the representation
// of the universal environment across all modules.
//
// The lexical environment is a tree of blocks with the file block at
// its root. The file's child blocks may be of two kinds: functions
// and comprehensions, and these may have further children of either
// kind.
//
// Python-style resolution requires multiple passes because a name is
// determined to be local to a function only if the function contains a
// "binding" use of it; similarly, a name is determined to be global (as
// opposed to predeclared) if the module contains a top-level binding use.
// Unlike ordinary top-level assignments, the bindings created by load
// statements are local to the file block.
// A non-binding use may lexically precede the binding to which it is resolved.
// In the first pass, we inspect each function, recording in
// 'uses' each identifier and the environment block in which it occurs.
// If a use of a name is binding, such as a function parameter or
// assignment, we add the name to the block's bindings mapping and add a
// local variable to the enclosing function.
//
// As we finish resolving each function, we inspect all the uses within
// that function and discard ones that were found to be function-local. The
// remaining ones must be either free (local to some lexically enclosing
// function), or top-level (global, predeclared, or file-local), but we cannot tell
// which until we have finished inspecting the outermost enclosing
// function. At that point, we can distinguish local from top-level names
// (and this is when Python would compute free variables).
//
// However, Starlark additionally requires that all references to global
// names are satisfied by some declaration in the current module;
// Starlark permits a function to forward-reference a global or file-local
// that has not
// been declared yet so long as it is declared before the end of the
// module. So, instead of re-resolving the unresolved references after
// each top-level function, we defer this until the end of the module
// and ensure that all such references are satisfied by some definition.
//
// At the end of the module, we visit each of the nested function blocks
// in bottom-up order, doing a recursive lexical lookup for each
// unresolved name. If the name is found to be local to some enclosing
// function, we must create a DefStmt.FreeVar (capture) parameter for
// each intervening function. We enter these synthetic bindings into
// the bindings map so that we create at most one freevar per name. If
// the name was not local, we check that it was defined at module level.
//
// We resolve all uses of locals in the module (due to load statements
// and comprehensions) in a similar way and compute the file's set of
// local variables.
//
// Starlark enforces that all global names are assigned at most once on
// all control flow paths by forbidding if/else statements and loops at
// top level. A global may be used before it is defined, leading to a
// dynamic error. However, the AllowGlobalReassign flag (really: allow
// top-level reassign) makes the resolver allow multiple to a variable
// at top-level. It also allows if-, for-, and while-loops at top-level,
// which in turn may make the evaluator dynamically assign multiple
// values to a variable at top-level. (These two roles should be separated.)
import (
"fmt"
"log"
"sort"
"strings"
"go.starlark.net/internal/spell"
"go.starlark.net/syntax"
)
const debug = false
const doesnt = "this Starlark dialect does not "
// Global options: these features are either not standard Starlark
// (yet), or deprecated features of the BUILD language, so we put them
// behind flags.
//
// Deprecated: use an explicit [syntax.FileOptions] argument instead,
// as it avoids all the usual problems of global variables,
// and permits finer control.
//
// For example The legacy AllowGlobalReassign flag controls three
// FileOptions: the availability of 'while' loops at all; the use of
// if/for/while constructs at top level; and the ability to reassign
// a global variable.
var (
AllowGlobalReassign = false // allow reassignment to top-level names; while loops; and if/for/while at top-level
AllowRecursion = false // allow recursive functions
LoadBindsGlobally = false // load creates global not file-local bindings (deprecated)
// obsolete flags for features that are now standard. No effect.
AllowBitwise = true
AllowFloat = true
AllowLambda = true
AllowNestedDef = true
AllowSet = true
)
// File resolves the specified file and records information about the
// module in file.Module.
//
// The isPredeclared and isUniversal predicates report whether a name is
// a pre-declared identifier (visible in the current module) or a
// universal identifier (visible in every module).
// Clients should typically pass predeclared.Has for the first and
// starlark.Universe.Has for the second, where predeclared is the
// module's StringDict of predeclared names and starlark.Universe is the
// standard set of built-ins.
// The isUniverse predicate is supplied a parameter to avoid a cyclic
// dependency upon starlark.Universe, not because users should ever need
// to redefine it.
func File(file *syntax.File, isPredeclared, isUniversal func(name string) bool) error {
return REPLChunk(file, nil, isPredeclared, isUniversal)
}
// REPLChunk is a generalization of the File function that supports a
// non-empty initial global block, as occurs in a REPL.
func REPLChunk(file *syntax.File, isGlobal, isPredeclared, isUniversal func(name string) bool) error {
r := newResolver(file.Options, isGlobal, isPredeclared, isUniversal)
r.stmts(file.Stmts)
r.env.resolveLocalUses()
// At the end of the module, resolve all non-local variable references,
// computing closures.
// Function bodies may contain forward references to later global declarations.
r.resolveNonLocalUses(r.env)
file.Module = &Module{
Locals: r.moduleLocals,
Globals: r.moduleGlobals,
}
if len(r.errors) > 0 {
return r.errors
}
return nil
}
// Expr calls [ExprOptions] using [syntax.LegacyFileOptions].
//
// Deprecated: use [ExprOptions] with [syntax.FileOptions] instead,
// because this function relies on legacy global variables.
func Expr(expr syntax.Expr, isPredeclared, isUniversal func(name string) bool) ([]*Binding, error) {
return ExprOptions(syntax.LegacyFileOptions(), expr, isPredeclared, isUniversal)
}
// ExprOptions resolves the specified expression.
// It returns the local variables bound within the expression.
//
// The isPredeclared and isUniversal predicates behave as for the File function
func ExprOptions(opts *syntax.FileOptions, expr syntax.Expr, isPredeclared, isUniversal func(name string) bool) ([]*Binding, error) {
r := newResolver(opts, nil, isPredeclared, isUniversal)
r.expr(expr)
r.env.resolveLocalUses()
r.resolveNonLocalUses(r.env) // globals & universals
if len(r.errors) > 0 {
return nil, r.errors
}
return r.moduleLocals, nil
}
// An ErrorList is a non-empty list of resolver error messages.
type ErrorList []Error // len > 0
func (e ErrorList) Error() string { return e[0].Error() }
// An Error describes the nature and position of a resolver error.
type Error struct {
Pos syntax.Position
Msg string
}
func (e Error) Error() string { return e.Pos.String() + ": " + e.Msg }
func newResolver(options *syntax.FileOptions, isGlobal, isPredeclared, isUniversal func(name string) bool) *resolver {
file := new(block)
return &resolver{
options: options,
file: file,
env: file,
isGlobal: isGlobal,
isPredeclared: isPredeclared,
isUniversal: isUniversal,
globals: make(map[string]*Binding),
predeclared: make(map[string]*Binding),
}
}
type resolver struct {
options *syntax.FileOptions
// env is the current local environment:
// a linked list of blocks, innermost first.
// The tail of the list is the file block.
env *block
file *block // file block (contains load bindings)
// moduleLocals contains the local variables of the module
// (due to load statements and comprehensions outside any function).
// moduleGlobals contains the global variables of the module.
moduleLocals []*Binding
moduleGlobals []*Binding
// globals maps each global name in the module to its binding.
// predeclared does the same for predeclared and universal names.
globals map[string]*Binding
predeclared map[string]*Binding
// These predicates report whether a name is
// pre-declared, either in this module or universally,
// or already declared in the module globals (as in a REPL).
// isGlobal may be nil.
isGlobal, isPredeclared, isUniversal func(name string) bool
loops int // number of enclosing for/while loops in current function (or file, if top-level)
ifstmts int // number of enclosing if statements loops
errors ErrorList
}
// container returns the innermost enclosing "container" block:
// a function (function != nil) or file (function == nil).
// Container blocks accumulate local variable bindings.
func (r *resolver) container() *block {
for b := r.env; ; b = b.parent {
if b.function != nil || b == r.file {
return b
}
}
}
func (r *resolver) push(b *block) {
r.env.children = append(r.env.children, b)
b.parent = r.env
r.env = b
}
func (r *resolver) pop() { r.env = r.env.parent }
type block struct {
parent *block // nil for file block
// In the file (root) block, both these fields are nil.
function *Function // only for function blocks
comp *syntax.Comprehension // only for comprehension blocks
// bindings maps a name to its binding.
// A local binding has an index into its innermost enclosing container's locals array.
// A free binding has an index into its innermost enclosing function's freevars array.
bindings map[string]*Binding
// children records the child blocks of the current one.
children []*block
// uses records all identifiers seen in this container (function or file),
// and a reference to the environment in which they appear.
// As we leave each container block, we resolve them,
// so that only free and global ones remain.
// At the end of each top-level function we compute closures.
uses []use
}
func (b *block) bind(name string, bind *Binding) {
if b.bindings == nil {
b.bindings = make(map[string]*Binding)
}
b.bindings[name] = bind
}
func (b *block) String() string {
if b.function != nil {
return "function block at " + fmt.Sprint(b.function.Pos)
}
if b.comp != nil {
return "comprehension block at " + fmt.Sprint(b.comp.Span())
}
return "file block"
}
func (r *resolver) errorf(posn syntax.Position, format string, args ...interface{}) {
r.errors = append(r.errors, Error{posn, fmt.Sprintf(format, args...)})
}
// A use records an identifier and the environment in which it appears.
type use struct {
id *syntax.Ident
env *block
}
// bind creates a binding for id: a global (not file-local)
// binding at top-level, a local binding otherwise.
// At top-level, it reports an error if a global or file-local
// binding already exists, unless AllowGlobalReassign.
// It sets id.Binding to the binding (whether old or new),
// and returns whether a binding already existed.
func (r *resolver) bind(id *syntax.Ident) bool {
// Binding outside any local (comprehension/function) block?
if r.env == r.file {
bind, ok := r.file.bindings[id.Name]
if !ok {
bind, ok = r.globals[id.Name]
if !ok {
// first global binding of this name
bind = &Binding{
First: id,
Scope: Global,
Index: len(r.moduleGlobals),
}
r.globals[id.Name] = bind
r.moduleGlobals = append(r.moduleGlobals, bind)
}
}
if ok && !r.options.GlobalReassign {
r.errorf(id.NamePos, "cannot reassign %s %s declared at %s",
bind.Scope, id.Name, bind.First.NamePos)
}
id.Binding = bind
return ok
}
return r.bindLocal(id)
}
func (r *resolver) bindLocal(id *syntax.Ident) bool {
// Mark this name as local to current block.
// Assign it a new local (positive) index in the current container.
_, ok := r.env.bindings[id.Name]
if !ok {
var locals *[]*Binding
if fn := r.container().function; fn != nil {
locals = &fn.Locals
} else {
locals = &r.moduleLocals
}
bind := &Binding{
First: id,
Scope: Local,
Index: len(*locals),
}
r.env.bind(id.Name, bind)
*locals = append(*locals, bind)
}
r.use(id)
return ok
}
func (r *resolver) use(id *syntax.Ident) {
use := use{id, r.env}
// The spec says that if there is a global binding of a name
// then all references to that name in that block refer to the
// global, even if the use precedes the def---just as for locals.
// For example, in this code,
//
// print(len); len=1; print(len)
//
// both occurrences of len refer to the len=1 binding, which
// completely shadows the predeclared len function.
//
// The rationale for these semantics, which differ from Python,
// is that the static meaning of len (a reference to a global)
// does not change depending on where it appears in the file.
// Of course, its dynamic meaning does change, from an error
// into a valid reference, so it's not clear these semantics
// have any practical advantage.
//
// In any case, the Bazel implementation lags behind the spec
// and follows Python behavior, so the first use of len refers
// to the predeclared function. This typically used in a BUILD
// file that redefines a predeclared name half way through,
// for example:
//
// proto_library(...) # built-in rule
// load("myproto.bzl", "proto_library")
// proto_library(...) # user-defined rule
//
// We will piggyback support for the legacy semantics on the
// AllowGlobalReassign flag, which is loosely related and also
// required for Bazel.
if r.options.GlobalReassign && r.env == r.file {
r.useToplevel(use)
return
}
b := r.container()
b.uses = append(b.uses, use)
}
// useToplevel resolves use.id as a reference to a name visible at top-level.
// The use.env field captures the original environment for error reporting.
func (r *resolver) useToplevel(use use) (bind *Binding) {
id := use.id
if prev, ok := r.file.bindings[id.Name]; ok {
// use of load-defined name in file block
bind = prev
} else if prev, ok := r.globals[id.Name]; ok {
// use of global declared by module
bind = prev
} else if r.isGlobal != nil && r.isGlobal(id.Name) {
// use of global defined in a previous REPL chunk
bind = &Binding{
First: id, // wrong: this is not even a binding use
Scope: Global,
Index: len(r.moduleGlobals),
}
r.globals[id.Name] = bind
r.moduleGlobals = append(r.moduleGlobals, bind)
} else if prev, ok := r.predeclared[id.Name]; ok {
// repeated use of predeclared or universal
bind = prev
} else if r.isPredeclared(id.Name) {
// use of pre-declared name
bind = &Binding{Scope: Predeclared}
r.predeclared[id.Name] = bind // save it
} else if r.isUniversal(id.Name) {
// use of universal name
if !r.options.Set && id.Name == "set" {
r.errorf(id.NamePos, doesnt+"support sets")
}
bind = &Binding{Scope: Universal}
r.predeclared[id.Name] = bind // save it
} else {
bind = &Binding{Scope: Undefined}
var hint string
if n := r.spellcheck(use); n != "" {
hint = fmt.Sprintf(" (did you mean %s?)", n)
}
r.errorf(id.NamePos, "undefined: %s%s", id.Name, hint)
}
id.Binding = bind
return bind
}
// spellcheck returns the most likely misspelling of
// the name use.id in the environment use.env.
func (r *resolver) spellcheck(use use) string {
var names []string
// locals
for b := use.env; b != nil; b = b.parent {
for name := range b.bindings {
names = append(names, name)
}
}
// globals
//
// We have no way to enumerate the sets whose membership
// tests are isPredeclared, isUniverse, and isGlobal,
// which includes prior names in the REPL session.
for _, bind := range r.moduleGlobals {
names = append(names, bind.First.Name)
}
sort.Strings(names)
return spell.Nearest(use.id.Name, names)
}
// resolveLocalUses is called when leaving a container (function/module)
// block. It resolves all uses of locals/cells within that block.
func (b *block) resolveLocalUses() {
unresolved := b.uses[:0]
for _, use := range b.uses {
if bind := lookupLocal(use); bind != nil && (bind.Scope == Local || bind.Scope == Cell) {
use.id.Binding = bind
} else {
unresolved = append(unresolved, use)
}
}
b.uses = unresolved
}
func (r *resolver) stmts(stmts []syntax.Stmt) {
for _, stmt := range stmts {
r.stmt(stmt)
}
}
func (r *resolver) stmt(stmt syntax.Stmt) {
switch stmt := stmt.(type) {
case *syntax.ExprStmt:
r.expr(stmt.X)
case *syntax.BranchStmt:
if r.loops == 0 && (stmt.Token == syntax.BREAK || stmt.Token == syntax.CONTINUE) {
r.errorf(stmt.TokenPos, "%s not in a loop", stmt.Token)
}
case *syntax.IfStmt:
if !r.options.TopLevelControl && r.container().function == nil {
r.errorf(stmt.If, "if statement not within a function")
}
r.expr(stmt.Cond)
r.ifstmts++
r.stmts(stmt.True)
r.stmts(stmt.False)
r.ifstmts--
case *syntax.AssignStmt:
r.expr(stmt.RHS)
isAugmented := stmt.Op != syntax.EQ
r.assign(stmt.LHS, isAugmented)
case *syntax.DefStmt:
r.bind(stmt.Name)
fn := &Function{
Name: stmt.Name.Name,
Pos: stmt.Def,
Params: stmt.Params,
Body: stmt.Body,
}
stmt.Function = fn
r.function(fn, stmt.Def)
case *syntax.ForStmt:
if !r.options.TopLevelControl && r.container().function == nil {
r.errorf(stmt.For, "for loop not within a function")
}
r.expr(stmt.X)
const isAugmented = false
r.assign(stmt.Vars, isAugmented)
r.loops++
r.stmts(stmt.Body)
r.loops--
case *syntax.WhileStmt:
if !r.options.While {
r.errorf(stmt.While, doesnt+"support while loops")
}
if !r.options.TopLevelControl && r.container().function == nil {
r.errorf(stmt.While, "while loop not within a function")
}
r.expr(stmt.Cond)
r.loops++
r.stmts(stmt.Body)
r.loops--
case *syntax.ReturnStmt:
if r.container().function == nil {
r.errorf(stmt.Return, "return statement not within a function")
}
if stmt.Result != nil {
r.expr(stmt.Result)
}
case *syntax.LoadStmt:
// A load statement may not be nested in any other statement.
if r.container().function != nil {
r.errorf(stmt.Load, "load statement within a function")
} else if r.loops > 0 {
r.errorf(stmt.Load, "load statement within a loop")
} else if r.ifstmts > 0 {
r.errorf(stmt.Load, "load statement within a conditional")
}
for i, from := range stmt.From {
if from.Name == "" {
r.errorf(from.NamePos, "load: empty identifier")
continue
}
if from.Name[0] == '_' {
r.errorf(from.NamePos, "load: names with leading underscores are not exported: %s", from.Name)
}
id := stmt.To[i]
if r.options.LoadBindsGlobally {
r.bind(id)
} else if r.bindLocal(id) && !r.options.GlobalReassign {
// "Global" in AllowGlobalReassign is a misnomer for "toplevel".
// Sadly we can't report the previous declaration
// as id.Binding may not be set yet.
r.errorf(id.NamePos, "cannot reassign top-level %s", id.Name)
}
}
default:
log.Panicf("unexpected stmt %T", stmt)
}
}
func (r *resolver) assign(lhs syntax.Expr, isAugmented bool) {
switch lhs := lhs.(type) {
case *syntax.Ident:
// x = ...
r.bind(lhs)
case *syntax.IndexExpr:
// x[i] = ...
r.expr(lhs.X)
r.expr(lhs.Y)
case *syntax.DotExpr:
// x.f = ...
r.expr(lhs.X)
case *syntax.TupleExpr:
// (x, y) = ...
if isAugmented {
r.errorf(syntax.Start(lhs), "can't use tuple expression in augmented assignment")
}
for _, elem := range lhs.List {
r.assign(elem, isAugmented)
}
case *syntax.ListExpr:
// [x, y, z] = ...
if isAugmented {
r.errorf(syntax.Start(lhs), "can't use list expression in augmented assignment")
}
for _, elem := range lhs.List {
r.assign(elem, isAugmented)
}
case *syntax.ParenExpr:
r.assign(lhs.X, isAugmented)
default:
name := strings.ToLower(strings.TrimPrefix(fmt.Sprintf("%T", lhs), "*syntax."))
r.errorf(syntax.Start(lhs), "can't assign to %s", name)
}
}
func (r *resolver) expr(e syntax.Expr) {
switch e := e.(type) {
case *syntax.Ident:
r.use(e)
case *syntax.Literal:
case *syntax.ListExpr:
for _, x := range e.List {
r.expr(x)
}
case *syntax.CondExpr:
r.expr(e.Cond)
r.expr(e.True)
r.expr(e.False)
case *syntax.IndexExpr:
r.expr(e.X)
r.expr(e.Y)
case *syntax.DictEntry:
r.expr(e.Key)
r.expr(e.Value)
case *syntax.SliceExpr:
r.expr(e.X)
if e.Lo != nil {
r.expr(e.Lo)
}
if e.Hi != nil {
r.expr(e.Hi)
}
if e.Step != nil {
r.expr(e.Step)
}
case *syntax.Comprehension:
// The 'in' operand of the first clause (always a ForClause)
// is resolved in the outer block; consider: [x for x in x].
clause := e.Clauses[0].(*syntax.ForClause)
r.expr(clause.X)
// A list/dict comprehension defines a new lexical block.
// Locals defined within the block will be allotted
// distinct slots in the locals array of the innermost
// enclosing container (function/module) block.
r.push(&block{comp: e})
const isAugmented = false
r.assign(clause.Vars, isAugmented)
for _, clause := range e.Clauses[1:] {
switch clause := clause.(type) {
case *syntax.IfClause:
r.expr(clause.Cond)
case *syntax.ForClause:
r.assign(clause.Vars, isAugmented)
r.expr(clause.X)
}
}
r.expr(e.Body) // body may be *DictEntry
r.pop()
case *syntax.TupleExpr:
for _, x := range e.List {
r.expr(x)
}
case *syntax.DictExpr:
for _, entry := range e.List {
entry := entry.(*syntax.DictEntry)
r.expr(entry.Key)
r.expr(entry.Value)
}
case *syntax.UnaryExpr:
r.expr(e.X)
case *syntax.BinaryExpr:
r.expr(e.X)
r.expr(e.Y)
case *syntax.DotExpr:
r.expr(e.X)
// ignore e.Name
case *syntax.CallExpr:
r.expr(e.Fn)
var seenVarargs, seenKwargs bool
var seenName map[string]bool
var n, p int
for _, arg := range e.Args {
pos, _ := arg.Span()
if unop, ok := arg.(*syntax.UnaryExpr); ok && unop.Op == syntax.STARSTAR {
// **kwargs
if seenKwargs {
r.errorf(pos, "multiple **kwargs not allowed")
}
seenKwargs = true
r.expr(arg)
} else if ok && unop.Op == syntax.STAR {
// *args
if seenKwargs {
r.errorf(pos, "*args may not follow **kwargs")
} else if seenVarargs {
r.errorf(pos, "multiple *args not allowed")
}
seenVarargs = true
r.expr(arg)
} else if binop, ok := arg.(*syntax.BinaryExpr); ok && binop.Op == syntax.EQ {
// k=v
n++
if seenKwargs {
r.errorf(pos, "keyword argument may not follow **kwargs")
} else if seenVarargs {
r.errorf(pos, "keyword argument may not follow *args")
}
x := binop.X.(*syntax.Ident)
if seenName[x.Name] {
r.errorf(x.NamePos, "keyword argument %q is repeated", x.Name)
} else {
if seenName == nil {
seenName = make(map[string]bool)
}
seenName[x.Name] = true
}
r.expr(binop.Y)
} else {
// positional argument
p++
if seenVarargs {
r.errorf(pos, "positional argument may not follow *args")
} else if seenKwargs {
r.errorf(pos, "positional argument may not follow **kwargs")
} else if len(seenName) > 0 {
r.errorf(pos, "positional argument may not follow named")
}
r.expr(arg)
}
}
// Fail gracefully if compiler-imposed limit is exceeded.
if p >= 256 {
pos, _ := e.Span()
r.errorf(pos, "%v positional arguments in call, limit is 255", p)
}
if n >= 256 {
pos, _ := e.Span()
r.errorf(pos, "%v keyword arguments in call, limit is 255", n)
}
case *syntax.LambdaExpr:
fn := &Function{
Name: "lambda",
Pos: e.Lambda,
Params: e.Params,
Body: []syntax.Stmt{&syntax.ReturnStmt{Result: e.Body}},
}
e.Function = fn
r.function(fn, e.Lambda)
case *syntax.ParenExpr:
r.expr(e.X)
default:
log.Panicf("unexpected expr %T", e)
}
}
func (r *resolver) function(function *Function, pos syntax.Position) {
// Resolve defaults in enclosing environment.
for _, param := range function.Params {
if binary, ok := param.(*syntax.BinaryExpr); ok {
r.expr(binary.Y)
}
}
// Enter function block.
b := &block{function: function}
r.push(b)
// Save the current loop count and reset it for the new function
outerLoops := r.loops
r.loops = 0
var seenOptional bool
var star *syntax.UnaryExpr // * or *args param
var starStar *syntax.Ident // **kwargs ident
var numKwonlyParams int
for _, param := range function.Params {
switch param := param.(type) {
case *syntax.Ident:
// e.g. x
if starStar != nil {
r.errorf(param.NamePos, "required parameter may not follow **%s", starStar.Name)
} else if star != nil {
numKwonlyParams++
} else if seenOptional {
r.errorf(param.NamePos, "required parameter may not follow optional")
}
if r.bind(param) {
r.errorf(param.NamePos, "duplicate parameter: %s", param.Name)
}
case *syntax.BinaryExpr:
// e.g. y=dflt
if starStar != nil {
r.errorf(param.OpPos, "optional parameter may not follow **%s", starStar.Name)
} else if star != nil {
numKwonlyParams++
}
if id := param.X.(*syntax.Ident); r.bind(id) {
r.errorf(param.OpPos, "duplicate parameter: %s", id.Name)
}
seenOptional = true
case *syntax.UnaryExpr:
// * or *args or **kwargs
if param.Op == syntax.STAR {
if starStar != nil {
r.errorf(param.OpPos, "* parameter may not follow **%s", starStar.Name)
} else if star != nil {
r.errorf(param.OpPos, "multiple * parameters not allowed")
} else {
star = param
}
} else {
if starStar != nil {
r.errorf(param.OpPos, "multiple ** parameters not allowed")
}
starStar = param.X.(*syntax.Ident)
}
}
}
// Bind the *args and **kwargs parameters at the end,
// so that regular parameters a/b/c are contiguous and
// there is no hole for the "*":
// def f(a, b, *args, c=0, **kwargs)
// def f(a, b, *, c=0, **kwargs)
if star != nil {
if id, _ := star.X.(*syntax.Ident); id != nil {
// *args
if r.bind(id) {
r.errorf(id.NamePos, "duplicate parameter: %s", id.Name)
}
function.HasVarargs = true
} else if numKwonlyParams == 0 {
r.errorf(star.OpPos, "bare * must be followed by keyword-only parameters")
}
}
if starStar != nil {
if r.bind(starStar) {
r.errorf(starStar.NamePos, "duplicate parameter: %s", starStar.Name)
}
function.HasKwargs = true
}
function.NumKwonlyParams = numKwonlyParams
r.stmts(function.Body)
// Resolve all uses of this function's local vars,
// and keep just the remaining uses of free/global vars.
b.resolveLocalUses()
// Leave function block.
r.pop()
// Restore the outer loop count
r.loops = outerLoops
// References within the function body to globals are not
// resolved until the end of the module.
}
func (r *resolver) resolveNonLocalUses(b *block) {
// First resolve inner blocks.
for _, child := range b.children {
r.resolveNonLocalUses(child)
}
for _, use := range b.uses {
use.id.Binding = r.lookupLexical(use, use.env)
}
}
// lookupLocal looks up an identifier within its immediately enclosing function.
func lookupLocal(use use) *Binding {
for env := use.env; env != nil; env = env.parent {
if bind, ok := env.bindings[use.id.Name]; ok {
if bind.Scope == Free {
// shouldn't exist till later
log.Panicf("%s: internal error: %s, %v", use.id.NamePos, use.id.Name, bind)
}
return bind // found
}
if env.function != nil {
break
}
}
return nil // not found in this function
}
// lookupLexical looks up an identifier use.id within its lexically enclosing environment.
// The use.env field captures the original environment for error reporting.
func (r *resolver) lookupLexical(use use, env *block) (bind *Binding) {
if debug {
fmt.Printf("lookupLexical %s in %s = ...\n", use.id.Name, env)
defer func() { fmt.Printf("= %v\n", bind) }()
}
// Is this the file block?
if env == r.file {
return r.useToplevel(use) // file-local, global, predeclared, or not found
}
// Defined in this block?
bind, ok := env.bindings[use.id.Name]
if !ok {
// Defined in parent block?
bind = r.lookupLexical(use, env.parent)
if env.function != nil && (bind.Scope == Local || bind.Scope == Free || bind.Scope == Cell) {
// Found in parent block, which belongs to enclosing function.
// Add the parent's binding to the function's freevars,
// and add a new 'free' binding to the inner function's block,
// and turn the parent's local into cell.
if bind.Scope == Local {
bind.Scope = Cell
}
index := len(env.function.FreeVars)
env.function.FreeVars = append(env.function.FreeVars, bind)
bind = &Binding{
First: bind.First,
Scope: Free,
Index: index,
}
if debug {
fmt.Printf("creating freevar %v in function at %s: %s\n",
len(env.function.FreeVars), env.function.Pos, use.id.Name)
}
}
// Memoize, to avoid duplicate free vars
// and redundant global (failing) lookups.
env.bind(use.id.Name, bind)
}
return bind
}

60
vendor/go.starlark.net/starlark/debug.go generated vendored Normal file
View file

@ -0,0 +1,60 @@
package starlark
import (
"go.starlark.net/syntax"
)
// This file defines an experimental API for the debugging tools.
// Some of these declarations expose details of internal packages.
// (The debugger makes liberal use of exported fields of unexported types.)
// Breaking changes may occur without notice.
// A Binding is the name and position of a binding identifier.
type Binding struct {
Name string
Pos syntax.Position
}
// NumLocals returns the number of local variables of this frame.
// It is zero unless fr.Callable() is a *Function.
func (fr *frame) NumLocals() int { return len(fr.locals) }
// Local returns the binding (name and binding position) and value of
// the i'th local variable of the frame's function.
// Beware: the value may be nil if it has not yet been assigned!
//
// The index i must be less than [NumLocals].
// Local may be called only while the frame is active.
//
// This function is provided only for debugging tools.
func (fr *frame) Local(i int) (Binding, Value) {
return Binding(fr.callable.(*Function).funcode.Locals[i]), fr.locals[i]
}
// DebugFrame is the debugger API for a frame of the interpreter's call stack.
//
// Most applications have no need for this API; use CallFrame instead.
//
// It may be tempting to use this interface when implementing built-in
// functions. Beware that reflection over the call stack is easily
// abused, leading to built-in functions whose behavior is mysterious
// and unpredictable.
//
// Clients must not retain a DebugFrame nor call any of its methods once
// the current built-in call has returned or execution has resumed
// after a breakpoint as this may have unpredictable effects, including
// but not limited to retention of object that would otherwise be garbage.
type DebugFrame interface {
Callable() Callable // returns the frame's function
NumLocals() int // returns the number of local variables in this frame
Local(i int) (Binding, Value) // returns the binding and value of the (Starlark) frame's ith local variable
Position() syntax.Position // returns the current position of execution in this frame
}
// DebugFrame returns the debugger interface for
// the specified frame of the interpreter's call stack.
// Frame numbering is as for Thread.CallFrame: 0 <= depth < thread.CallStackDepth().
//
// This function is intended for use in debugging tools.
// Most applications should have no need for it; use CallFrame instead.
func (thread *Thread) DebugFrame(depth int) DebugFrame { return thread.frameAt(depth) }

3
vendor/go.starlark.net/starlark/empty.s generated vendored Normal file
View file

@ -0,0 +1,3 @@
// The presence of this file allows the package to use the
// "go:linkname" hack to call non-exported functions in the
// Go runtime, such as hardware-accelerated string hashing.

1641
vendor/go.starlark.net/starlark/eval.go generated vendored Normal file

File diff suppressed because it is too large Load diff

450
vendor/go.starlark.net/starlark/hashtable.go generated vendored Normal file
View file

@ -0,0 +1,450 @@
// Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package starlark
import (
"fmt"
"hash/maphash"
"math/big"
)
// hashtable is used to represent Starlark dict and set values.
// It is a hash table whose key/value entries form a doubly-linked list
// in the order the entries were inserted.
//
// Initialized instances of hashtable must not be copied.
type hashtable struct {
table []bucket // len is zero or a power of two
bucket0 [1]bucket // inline allocation for small maps.
len uint32
itercount uint32 // number of active iterators (ignored if frozen)
head *entry // insertion order doubly-linked list; may be nil
tailLink **entry // address of nil link at end of list (perhaps &head)
frozen bool
_ noCopy // triggers vet copylock check on this type.
}
// noCopy is zero-sized type that triggers vet's copylock check.
// See https://github.com/golang/go/issues/8005#issuecomment-190753527.
type noCopy struct{}
func (*noCopy) Lock() {}
func (*noCopy) Unlock() {}
const bucketSize = 8
type bucket struct {
entries [bucketSize]entry
next *bucket // linked list of buckets
}
type entry struct {
hash uint32 // nonzero => in use
key, value Value
next *entry // insertion order doubly-linked list; may be nil
prevLink **entry // address of link to this entry (perhaps &head)
}
func (ht *hashtable) init(size int) {
if size < 0 {
panic("size < 0")
}
nb := 1
for overloaded(size, nb) {
nb = nb << 1
}
if nb < 2 {
ht.table = ht.bucket0[:1]
} else {
ht.table = make([]bucket, nb)
}
ht.tailLink = &ht.head
}
func (ht *hashtable) freeze() {
if !ht.frozen {
ht.frozen = true
for e := ht.head; e != nil; e = e.next {
e.key.Freeze()
e.value.Freeze()
}
}
}
func (ht *hashtable) insert(k, v Value) error {
if err := ht.checkMutable("insert into"); err != nil {
return err
}
if ht.table == nil {
ht.init(1)
}
h, err := k.Hash()
if err != nil {
return err
}
if h == 0 {
h = 1 // zero is reserved
}
retry:
var insert *entry
// Inspect each bucket in the bucket list.
p := &ht.table[h&(uint32(len(ht.table)-1))]
for {
for i := range p.entries {
e := &p.entries[i]
if e.hash != h {
if e.hash == 0 {
// Found empty entry; make a note.
insert = e
}
continue
}
if eq, err := Equal(k, e.key); err != nil {
return err // e.g. excessively recursive tuple
} else if !eq {
continue
}
// Key already present; update value.
e.value = v
return nil
}
if p.next == nil {
break
}
p = p.next
}
// Key not found. p points to the last bucket.
// Does the number of elements exceed the buckets' load factor?
if overloaded(int(ht.len), len(ht.table)) {
ht.grow()
goto retry
}
if insert == nil {
// No space in existing buckets. Add a new one to the bucket list.
b := new(bucket)
p.next = b
insert = &b.entries[0]
}
// Insert key/value pair.
insert.hash = h
insert.key = k
insert.value = v
// Append entry to doubly-linked list.
insert.prevLink = ht.tailLink
*ht.tailLink = insert
ht.tailLink = &insert.next
ht.len++
return nil
}
func overloaded(elems, buckets int) bool {
const loadFactor = 6.5 // just a guess
return elems >= bucketSize && float64(elems) >= loadFactor*float64(buckets)
}
func (ht *hashtable) grow() {
// Double the number of buckets and rehash.
//
// Even though this makes reentrant calls to ht.insert,
// calls Equals unnecessarily (since there can't be duplicate keys),
// and recomputes the hash unnecessarily, the gains from
// avoiding these steps were found to be too small to justify
// the extra logic: -2% on hashtable benchmark.
ht.table = make([]bucket, len(ht.table)<<1)
oldhead := ht.head
ht.head = nil
ht.tailLink = &ht.head
ht.len = 0
for e := oldhead; e != nil; e = e.next {
ht.insert(e.key, e.value)
}
ht.bucket0[0] = bucket{} // clear out unused initial bucket
}
func (ht *hashtable) lookup(k Value) (v Value, found bool, err error) {
h, err := k.Hash()
if err != nil {
return nil, false, err // unhashable
}
if h == 0 {
h = 1 // zero is reserved
}
if ht.table == nil {
return None, false, nil // empty
}
// Inspect each bucket in the bucket list.
for p := &ht.table[h&(uint32(len(ht.table)-1))]; p != nil; p = p.next {
for i := range p.entries {
e := &p.entries[i]
if e.hash == h {
if eq, err := Equal(k, e.key); err != nil {
return nil, false, err // e.g. excessively recursive tuple
} else if eq {
return e.value, true, nil // found
}
}
}
}
return None, false, nil // not found
}
// count returns the number of distinct elements of iter that are elements of ht.
func (ht *hashtable) count(iter Iterator) (int, error) {
if ht.table == nil {
return 0, nil // empty
}
var k Value
count := 0
// Use a bitset per table entry to record seen elements of ht.
// Elements are identified by their bucket number and index within the bucket.
// Each bitset gets one word initially, but may grow.
storage := make([]big.Word, len(ht.table))
bitsets := make([]big.Int, len(ht.table))
for i := range bitsets {
bitsets[i].SetBits(storage[i : i+1 : i+1])
}
for iter.Next(&k) && count != int(ht.len) {
h, err := k.Hash()
if err != nil {
return 0, err // unhashable
}
if h == 0 {
h = 1 // zero is reserved
}
// Inspect each bucket in the bucket list.
bucketId := h & (uint32(len(ht.table) - 1))
i := 0
for p := &ht.table[bucketId]; p != nil; p = p.next {
for j := range p.entries {
e := &p.entries[j]
if e.hash == h {
if eq, err := Equal(k, e.key); err != nil {
return 0, err
} else if eq {
bitIndex := i<<3 + j
if bitsets[bucketId].Bit(bitIndex) == 0 {
bitsets[bucketId].SetBit(&bitsets[bucketId], bitIndex, 1)
count++
}
}
}
}
i++
}
}
return count, nil
}
// Items returns all the items in the map (as key/value pairs) in insertion order.
func (ht *hashtable) items() []Tuple {
items := make([]Tuple, 0, ht.len)
array := make([]Value, ht.len*2) // allocate a single backing array
for e := ht.head; e != nil; e = e.next {
pair := Tuple(array[:2:2])
array = array[2:]
pair[0] = e.key
pair[1] = e.value
items = append(items, pair)
}
return items
}
func (ht *hashtable) first() (Value, bool) {
if ht.head != nil {
return ht.head.key, true
}
return None, false
}
func (ht *hashtable) keys() []Value {
keys := make([]Value, 0, ht.len)
for e := ht.head; e != nil; e = e.next {
keys = append(keys, e.key)
}
return keys
}
func (ht *hashtable) delete(k Value) (v Value, found bool, err error) {
if err := ht.checkMutable("delete from"); err != nil {
return nil, false, err
}
if ht.table == nil {
return None, false, nil // empty
}
h, err := k.Hash()
if err != nil {
return nil, false, err // unhashable
}
if h == 0 {
h = 1 // zero is reserved
}
// Inspect each bucket in the bucket list.
for p := &ht.table[h&(uint32(len(ht.table)-1))]; p != nil; p = p.next {
for i := range p.entries {
e := &p.entries[i]
if e.hash == h {
if eq, err := Equal(k, e.key); err != nil {
return nil, false, err
} else if eq {
// Remove e from doubly-linked list.
*e.prevLink = e.next
if e.next == nil {
ht.tailLink = e.prevLink // deletion of last entry
} else {
e.next.prevLink = e.prevLink
}
v := e.value
*e = entry{}
ht.len--
return v, true, nil // found
}
}
}
}
// TODO(adonovan): opt: remove completely empty bucket from bucket list.
return None, false, nil // not found
}
// checkMutable reports an error if the hash table should not be mutated.
// verb+" dict" should describe the operation.
func (ht *hashtable) checkMutable(verb string) error {
if ht.frozen {
return fmt.Errorf("cannot %s frozen hash table", verb)
}
if ht.itercount > 0 {
return fmt.Errorf("cannot %s hash table during iteration", verb)
}
return nil
}
func (ht *hashtable) clear() error {
if err := ht.checkMutable("clear"); err != nil {
return err
}
if ht.table != nil {
for i := range ht.table {
ht.table[i] = bucket{}
}
}
ht.head = nil
ht.tailLink = &ht.head
ht.len = 0
return nil
}
func (ht *hashtable) addAll(other *hashtable) error {
for e := other.head; e != nil; e = e.next {
if err := ht.insert(e.key, e.value); err != nil {
return err
}
}
return nil
}
// dump is provided as an aid to debugging.
func (ht *hashtable) dump() {
fmt.Printf("hashtable %p len=%d head=%p tailLink=%p",
ht, ht.len, ht.head, ht.tailLink)
if ht.tailLink != nil {
fmt.Printf(" *tailLink=%p", *ht.tailLink)
}
fmt.Println()
for j := range ht.table {
fmt.Printf("bucket chain %d\n", j)
for p := &ht.table[j]; p != nil; p = p.next {
fmt.Printf("bucket %p\n", p)
for i := range p.entries {
e := &p.entries[i]
fmt.Printf("\tentry %d @ %p hash=%d key=%v value=%v\n",
i, e, e.hash, e.key, e.value)
fmt.Printf("\t\tnext=%p &next=%p prev=%p",
e.next, &e.next, e.prevLink)
if e.prevLink != nil {
fmt.Printf(" *prev=%p", *e.prevLink)
}
fmt.Println()
}
}
}
}
func (ht *hashtable) iterate() *keyIterator {
if !ht.frozen {
ht.itercount++
}
return &keyIterator{ht: ht, e: ht.head}
}
type keyIterator struct {
ht *hashtable
e *entry
}
func (it *keyIterator) Next(k *Value) bool {
if it.e != nil {
*k = it.e.key
it.e = it.e.next
return true
}
return false
}
func (it *keyIterator) Done() {
if !it.ht.frozen {
it.ht.itercount--
}
}
// entries is a go1.23 iterator over the entries of the hash table.
func (ht *hashtable) entries(yield func(k, v Value) bool) {
if !ht.frozen {
ht.itercount++
defer func() { ht.itercount-- }()
}
for e := ht.head; e != nil && yield(e.key, e.value); e = e.next {
}
}
var seed = maphash.MakeSeed()
// hashString computes the hash of s.
func hashString(s string) uint32 {
if len(s) >= 12 {
// Call the Go runtime's optimized hash implementation,
// which uses the AES instructions on amd64 and arm64 machines.
h := maphash.String(seed, s)
return uint32(h>>32) | uint32(h)
}
return softHashString(s)
}
// softHashString computes the 32-bit FNV-1a hash of s in software.
func softHashString(s string) uint32 {
var h uint32 = 2166136261
for i := 0; i < len(s); i++ {
h ^= uint32(s[i])
h *= 16777619
}
return h
}

459
vendor/go.starlark.net/starlark/int.go generated vendored Normal file
View file

@ -0,0 +1,459 @@
// Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package starlark
import (
"fmt"
"math"
"math/big"
"reflect"
"strconv"
"go.starlark.net/syntax"
)
// Int is the type of a Starlark int.
//
// The zero value is not a legal value; use MakeInt(0).
type Int struct{ impl intImpl }
// --- high-level accessors ---
// MakeInt returns a Starlark int for the specified signed integer.
func MakeInt(x int) Int { return MakeInt64(int64(x)) }
// MakeInt64 returns a Starlark int for the specified int64.
func MakeInt64(x int64) Int {
if math.MinInt32 <= x && x <= math.MaxInt32 {
return makeSmallInt(x)
}
return makeBigInt(big.NewInt(x))
}
// MakeUint returns a Starlark int for the specified unsigned integer.
func MakeUint(x uint) Int { return MakeUint64(uint64(x)) }
// MakeUint64 returns a Starlark int for the specified uint64.
func MakeUint64(x uint64) Int {
if x <= math.MaxInt32 {
return makeSmallInt(int64(x))
}
return makeBigInt(new(big.Int).SetUint64(x))
}
// MakeBigInt returns a Starlark int for the specified big.Int.
// The new Int value will contain a copy of x. The caller is safe to modify x.
func MakeBigInt(x *big.Int) Int {
if isSmall(x) {
return makeSmallInt(x.Int64())
}
z := new(big.Int).Set(x)
return makeBigInt(z)
}
func isSmall(x *big.Int) bool {
n := x.BitLen()
return n < 32 || n == 32 && x.Int64() == math.MinInt32
}
var (
zero, one = makeSmallInt(0), makeSmallInt(1)
oneBig = big.NewInt(1)
_ HasUnary = Int{}
)
// Unary implements the operations +int, -int, and ~int.
func (i Int) Unary(op syntax.Token) (Value, error) {
switch op {
case syntax.MINUS:
return zero.Sub(i), nil
case syntax.PLUS:
return i, nil
case syntax.TILDE:
return i.Not(), nil
}
return nil, nil
}
// Int64 returns the value as an int64.
// If it is not exactly representable the result is undefined and ok is false.
func (i Int) Int64() (_ int64, ok bool) {
iSmall, iBig := i.get()
if iBig != nil {
x, acc := bigintToInt64(iBig)
if acc != big.Exact {
return // inexact
}
return x, true
}
return iSmall, true
}
// BigInt returns a new big.Int with the same value as the Int.
func (i Int) BigInt() *big.Int {
iSmall, iBig := i.get()
if iBig != nil {
return new(big.Int).Set(iBig)
}
return big.NewInt(iSmall)
}
// bigInt returns the value as a big.Int.
// It differs from BigInt in that this method returns the actual
// reference and any modification will change the state of i.
func (i Int) bigInt() *big.Int {
iSmall, iBig := i.get()
if iBig != nil {
return iBig
}
return big.NewInt(iSmall)
}
// Uint64 returns the value as a uint64.
// If it is not exactly representable the result is undefined and ok is false.
func (i Int) Uint64() (_ uint64, ok bool) {
iSmall, iBig := i.get()
if iBig != nil {
x, acc := bigintToUint64(iBig)
if acc != big.Exact {
return // inexact
}
return x, true
}
if iSmall < 0 {
return // inexact
}
return uint64(iSmall), true
}
// The math/big API should provide this function.
func bigintToInt64(i *big.Int) (int64, big.Accuracy) {
sign := i.Sign()
if sign > 0 {
if i.Cmp(maxint64) > 0 {
return math.MaxInt64, big.Below
}
} else if sign < 0 {
if i.Cmp(minint64) < 0 {
return math.MinInt64, big.Above
}
}
return i.Int64(), big.Exact
}
// The math/big API should provide this function.
func bigintToUint64(i *big.Int) (uint64, big.Accuracy) {
sign := i.Sign()
if sign > 0 {
if i.BitLen() > 64 {
return math.MaxUint64, big.Below
}
} else if sign < 0 {
return 0, big.Above
}
return i.Uint64(), big.Exact
}
var (
minint64 = new(big.Int).SetInt64(math.MinInt64)
maxint64 = new(big.Int).SetInt64(math.MaxInt64)
)
func (i Int) Format(s fmt.State, ch rune) {
iSmall, iBig := i.get()
if iBig != nil {
iBig.Format(s, ch)
return
}
big.NewInt(iSmall).Format(s, ch)
}
func (i Int) String() string {
iSmall, iBig := i.get()
if iBig != nil {
return iBig.Text(10)
}
return strconv.FormatInt(iSmall, 10)
}
func (i Int) Type() string { return "int" }
func (i Int) Freeze() {} // immutable
func (i Int) Truth() Bool { return i.Sign() != 0 }
func (i Int) Hash() (uint32, error) {
iSmall, iBig := i.get()
var lo big.Word
if iBig != nil {
lo = iBig.Bits()[0]
} else {
lo = big.Word(iSmall)
}
return 12582917 * uint32(lo+3), nil
}
// Cmp implements comparison of two Int values.
// Required by the TotallyOrdered interface.
func (i Int) Cmp(v Value, depth int) (int, error) {
j := v.(Int)
iSmall, iBig := i.get()
jSmall, jBig := j.get()
if iBig != nil || jBig != nil {
return i.bigInt().Cmp(j.bigInt()), nil
}
return signum64(iSmall - jSmall), nil // safe: int32 operands
}
// Float returns the float value nearest i.
func (i Int) Float() Float {
iSmall, iBig := i.get()
if iBig != nil {
// Fast path for hardware int-to-float conversions.
if iBig.IsUint64() {
return Float(iBig.Uint64())
} else if iBig.IsInt64() {
return Float(iBig.Int64())
} else {
// Fast path for very big ints.
const maxFiniteLen = 1023 + 1 // max exponent value + implicit mantissa bit
if iBig.BitLen() > maxFiniteLen {
return Float(math.Inf(iBig.Sign()))
}
}
f, _ := new(big.Float).SetInt(iBig).Float64()
return Float(f)
}
return Float(iSmall)
}
// finiteFloat returns the finite float value nearest i,
// or an error if the magnitude is too large.
func (i Int) finiteFloat() (Float, error) {
f := i.Float()
if math.IsInf(float64(f), 0) {
return 0, fmt.Errorf("int too large to convert to float")
}
return f, nil
}
func (x Int) Sign() int {
xSmall, xBig := x.get()
if xBig != nil {
return xBig.Sign()
}
return signum64(xSmall)
}
func (x Int) Add(y Int) Int {
xSmall, xBig := x.get()
ySmall, yBig := y.get()
if xBig != nil || yBig != nil {
return MakeBigInt(new(big.Int).Add(x.bigInt(), y.bigInt()))
}
return MakeInt64(xSmall + ySmall)
}
func (x Int) Sub(y Int) Int {
xSmall, xBig := x.get()
ySmall, yBig := y.get()
if xBig != nil || yBig != nil {
return MakeBigInt(new(big.Int).Sub(x.bigInt(), y.bigInt()))
}
return MakeInt64(xSmall - ySmall)
}
func (x Int) Mul(y Int) Int {
xSmall, xBig := x.get()
ySmall, yBig := y.get()
if xBig != nil || yBig != nil {
return MakeBigInt(new(big.Int).Mul(x.bigInt(), y.bigInt()))
}
return MakeInt64(xSmall * ySmall)
}
func (x Int) Or(y Int) Int {
xSmall, xBig := x.get()
ySmall, yBig := y.get()
if xBig != nil || yBig != nil {
return MakeBigInt(new(big.Int).Or(x.bigInt(), y.bigInt()))
}
return makeSmallInt(xSmall | ySmall)
}
func (x Int) And(y Int) Int {
xSmall, xBig := x.get()
ySmall, yBig := y.get()
if xBig != nil || yBig != nil {
return MakeBigInt(new(big.Int).And(x.bigInt(), y.bigInt()))
}
return makeSmallInt(xSmall & ySmall)
}
func (x Int) Xor(y Int) Int {
xSmall, xBig := x.get()
ySmall, yBig := y.get()
if xBig != nil || yBig != nil {
return MakeBigInt(new(big.Int).Xor(x.bigInt(), y.bigInt()))
}
return makeSmallInt(xSmall ^ ySmall)
}
func (x Int) Not() Int {
xSmall, xBig := x.get()
if xBig != nil {
return MakeBigInt(new(big.Int).Not(xBig))
}
return makeSmallInt(^xSmall)
}
func (x Int) Lsh(y uint) Int { return MakeBigInt(new(big.Int).Lsh(x.bigInt(), y)) }
func (x Int) Rsh(y uint) Int { return MakeBigInt(new(big.Int).Rsh(x.bigInt(), y)) }
// Precondition: y is nonzero.
func (x Int) Div(y Int) Int {
xSmall, xBig := x.get()
ySmall, yBig := y.get()
// http://python-history.blogspot.com/2010/08/why-pythons-integer-division-floors.html
if xBig != nil || yBig != nil {
xb, yb := x.bigInt(), y.bigInt()
var quo, rem big.Int
quo.QuoRem(xb, yb, &rem)
if (xb.Sign() < 0) != (yb.Sign() < 0) && rem.Sign() != 0 {
quo.Sub(&quo, oneBig)
}
return MakeBigInt(&quo)
}
quo := xSmall / ySmall
rem := xSmall % ySmall
if (xSmall < 0) != (ySmall < 0) && rem != 0 {
quo -= 1
}
return MakeInt64(quo)
}
// Precondition: y is nonzero.
func (x Int) Mod(y Int) Int {
xSmall, xBig := x.get()
ySmall, yBig := y.get()
if xBig != nil || yBig != nil {
xb, yb := x.bigInt(), y.bigInt()
var quo, rem big.Int
quo.QuoRem(xb, yb, &rem)
if (xb.Sign() < 0) != (yb.Sign() < 0) && rem.Sign() != 0 {
rem.Add(&rem, yb)
}
return MakeBigInt(&rem)
}
rem := xSmall % ySmall
if (xSmall < 0) != (ySmall < 0) && rem != 0 {
rem += ySmall
}
return makeSmallInt(rem)
}
func (i Int) rational() *big.Rat {
iSmall, iBig := i.get()
if iBig != nil {
return new(big.Rat).SetInt(iBig)
}
return new(big.Rat).SetInt64(iSmall)
}
// AsInt32 returns the value of x if is representable as an int32.
func AsInt32(x Value) (int, error) {
i, ok := x.(Int)
if !ok {
return 0, fmt.Errorf("got %s, want int", x.Type())
}
iSmall, iBig := i.get()
if iBig != nil {
return 0, fmt.Errorf("%s out of range", i)
}
return int(iSmall), nil
}
// AsInt sets *ptr to the value of Starlark int x, if it is exactly representable,
// otherwise it returns an error.
// The type of ptr must be one of the pointer types *int, *int8, *int16, *int32, or *int64,
// or one of their unsigned counterparts including *uintptr.
func AsInt(x Value, ptr interface{}) error {
xint, ok := x.(Int)
if !ok {
return fmt.Errorf("got %s, want int", x.Type())
}
bits := reflect.TypeOf(ptr).Elem().Size() * 8
switch ptr.(type) {
case *int, *int8, *int16, *int32, *int64:
i, ok := xint.Int64()
if !ok || bits < 64 && !(-1<<(bits-1) <= i && i < 1<<(bits-1)) {
return fmt.Errorf("%s out of range (want value in signed %d-bit range)", xint, bits)
}
switch ptr := ptr.(type) {
case *int:
*ptr = int(i)
case *int8:
*ptr = int8(i)
case *int16:
*ptr = int16(i)
case *int32:
*ptr = int32(i)
case *int64:
*ptr = int64(i)
}
case *uint, *uint8, *uint16, *uint32, *uint64, *uintptr:
i, ok := xint.Uint64()
if !ok || bits < 64 && i >= 1<<bits {
return fmt.Errorf("%s out of range (want value in unsigned %d-bit range)", xint, bits)
}
switch ptr := ptr.(type) {
case *uint:
*ptr = uint(i)
case *uint8:
*ptr = uint8(i)
case *uint16:
*ptr = uint16(i)
case *uint32:
*ptr = uint32(i)
case *uint64:
*ptr = uint64(i)
case *uintptr:
*ptr = uintptr(i)
}
default:
panic(fmt.Sprintf("invalid argument type: %T", ptr))
}
return nil
}
// NumberToInt converts a number x to an integer value.
// An int is returned unchanged, a float is truncated towards zero.
// NumberToInt reports an error for all other values.
func NumberToInt(x Value) (Int, error) {
switch x := x.(type) {
case Int:
return x, nil
case Float:
f := float64(x)
if math.IsInf(f, 0) {
return zero, fmt.Errorf("cannot convert float infinity to integer")
} else if math.IsNaN(f) {
return zero, fmt.Errorf("cannot convert float NaN to integer")
}
return finiteFloatToInt(x), nil
}
return zero, fmt.Errorf("cannot convert %s to int", x.Type())
}
// finiteFloatToInt converts f to an Int, truncating towards zero.
// f must be finite.
func finiteFloatToInt(f Float) Int {
// We avoid '<= MaxInt64' so that both constants are exactly representable as floats.
// See https://github.com/google/starlark-go/issues/375.
if math.MinInt64 <= f && f < math.MaxInt64+1 {
// small values
return MakeInt64(int64(f))
}
rat := f.rational()
if rat == nil {
panic(f) // non-finite
}
return MakeBigInt(new(big.Int).Div(rat.Num(), rat.Denom()))
}

33
vendor/go.starlark.net/starlark/int_generic.go generated vendored Normal file
View file

@ -0,0 +1,33 @@
//go:build (!linux && !darwin && !dragonfly && !freebsd && !netbsd && !solaris) || (!amd64 && !arm64 && !mips64x && !ppc64 && !ppc64le && !loong64 && !s390x)
package starlark
// generic Int implementation as a union
import "math/big"
type intImpl struct {
// We use only the signed 32-bit range of small to ensure
// that small+small and small*small do not overflow.
small_ int64 // minint32 <= small <= maxint32
big_ *big.Int // big != nil <=> value is not representable as int32
}
// --- low-level accessors ---
// get returns the small and big components of the Int.
// small is defined only if big is nil.
// small is sign-extended to 64 bits for ease of subsequent arithmetic.
func (i Int) get() (small int64, big *big.Int) {
return i.impl.small_, i.impl.big_
}
// Precondition: math.MinInt32 <= x && x <= math.MaxInt32
func makeSmallInt(x int64) Int {
return Int{intImpl{small_: x}}
}
// Precondition: x cannot be represented as int32.
func makeBigInt(x *big.Int) Int {
return Int{intImpl{big_: x}}
}

89
vendor/go.starlark.net/starlark/int_posix64.go generated vendored Normal file
View file

@ -0,0 +1,89 @@
//go:build (linux || darwin || dragonfly || freebsd || netbsd || solaris) && (amd64 || arm64 || mips64x || ppc64 || ppc64le || loong64 || s390x)
package starlark
// This file defines an optimized Int implementation for 64-bit machines
// running POSIX. It reserves a 4GB portion of the address space using
// mmap and represents int32 values as addresses within that range. This
// disambiguates int32 values from *big.Int pointers, letting all Int
// values be represented as an unsafe.Pointer, so that Int-to-Value
// interface conversion need not allocate.
// Although iOS (which, like macOS, appears as darwin/arm64) is
// POSIX-compliant, it limits each process to about 700MB of virtual
// address space, which defeats the optimization. Similarly,
// OpenBSD's default ulimit for virtual memory is a measly GB or so.
// On both those platforms the attempted optimization will fail and
// fall back to the slow implementation.
// An alternative approach to this optimization would be to embed the
// int32 values in pointers using odd values, which can be distinguished
// from (even) *big.Int pointers. However, the Go runtime does not allow
// user programs to manufacture pointers to arbitrary locations such as
// within the zero page, or non-span, non-mmap, non-stack locations,
// and it may panic if it encounters them; see Issue #382.
import (
"log"
"math"
"math/big"
"unsafe"
"golang.org/x/sys/unix"
)
// intImpl represents a union of (int32, *big.Int) in a single pointer,
// so that Int-to-Value conversions need not allocate.
//
// The pointer is either a *big.Int, if the value is big, or a pointer into a
// reserved portion of the address space (smallints), if the value is small
// and the address space allocation succeeded.
//
// See int_generic.go for the basic representation concepts.
type intImpl unsafe.Pointer
// get returns the (small, big) arms of the union.
func (i Int) get() (int64, *big.Int) {
if smallints == 0 {
// optimization disabled
if x := (*big.Int)(i.impl); isSmall(x) {
return x.Int64(), nil
} else {
return 0, x
}
}
if ptr := uintptr(i.impl); ptr >= smallints && ptr < smallints+1<<32 {
return math.MinInt32 + int64(ptr-smallints), nil
}
return 0, (*big.Int)(i.impl)
}
// Precondition: math.MinInt32 <= x && x <= math.MaxInt32
func makeSmallInt(x int64) Int {
if smallints == 0 {
// optimization disabled
return Int{intImpl(big.NewInt(x))}
}
return Int{intImpl(uintptr(x-math.MinInt32) + smallints)}
}
// Precondition: x cannot be represented as int32.
func makeBigInt(x *big.Int) Int { return Int{intImpl(x)} }
// smallints is the base address of a 2^32 byte memory region.
// Pointers to addresses in this region represent int32 values.
// We assume smallints is not at the very top of the address space.
//
// Zero means the optimization is disabled and all Ints allocate a big.Int.
var smallints = reserveAddresses(1 << 32)
func reserveAddresses(len int) uintptr {
b, err := unix.Mmap(-1, 0, len, unix.PROT_READ, unix.MAP_PRIVATE|unix.MAP_ANON)
if err != nil {
log.Printf("Starlark failed to allocate 4GB address space: %v. Integer performance may suffer.", err)
return 0 // optimization disabled
}
return uintptr(unsafe.Pointer(&b[0]))
}

714
vendor/go.starlark.net/starlark/interp.go generated vendored Normal file
View file

@ -0,0 +1,714 @@
package starlark
// This file defines the bytecode interpreter.
import (
"fmt"
"os"
"sync/atomic"
"unsafe"
"go.starlark.net/internal/compile"
"go.starlark.net/internal/spell"
"go.starlark.net/syntax"
)
const vmdebug = false // TODO(adonovan): use a bitfield of specific kinds of error.
// TODO(adonovan):
// - optimize position table.
// - opt: record MaxIterStack during compilation and preallocate the stack.
func (fn *Function) CallInternal(thread *Thread, args Tuple, kwargs []Tuple) (Value, error) {
// Postcondition: args is not mutated. This is stricter than required by Callable,
// but allows CALL to avoid a copy.
f := fn.funcode
if f.Prog.Recursion {
// prevent stack overflow
//
// Each CallInternal recursion (via Call) uses ~1.4KB,
// but the stack limit is on the order of 1GB, so a
// maximum of about 700K recursive calls is possible.
// Limit it to much less here.
if len(thread.stack) > 100_000 {
return nil, fmt.Errorf("Starlark stack overflow")
}
} else {
// detect recursion
for _, fr := range thread.stack[:len(thread.stack)-1] {
// We look for the same function code,
// not function value, otherwise the user could
// defeat the check by writing the Y combinator.
if frfn, ok := fr.Callable().(*Function); ok && frfn.funcode == f {
return nil, fmt.Errorf("function %s called recursively", fn.Name())
}
}
}
fr := thread.frameAt(0)
// Allocate space for stack and locals.
// Logically these do not escape from this frame
// (See https://github.com/golang/go/issues/20533.)
//
// This heap allocation looks expensive, but I was unable to get
// more than 1% real time improvement in a large alloc-heavy
// benchmark (in which this alloc was 8% of alloc-bytes)
// by allocating space for 8 Values in each frame, or
// by allocating stack by slicing an array held by the Thread
// that is expanded in chunks of min(k, nspace), for k=256 or 1024.
nlocals := len(f.Locals)
nspace := nlocals + f.MaxStack
space := make([]Value, nspace)
locals := space[:nlocals:nlocals] // local variables, starting with parameters
stack := space[nlocals:] // operand stack
// Digest arguments and set parameters.
err := setArgs(locals, fn, args, kwargs)
if err != nil {
return nil, thread.evalError(err)
}
fr.locals = locals
if vmdebug {
fmt.Printf("Entering %s @ %s\n", f.Name, f.Position(0))
fmt.Printf("%d stack, %d locals\n", len(stack), len(locals))
defer fmt.Println("Leaving ", f.Name)
}
// Spill indicated locals to cells.
// Each cell is a separate alloc to avoid spurious liveness.
for _, index := range f.Cells {
locals[index] = &cell{locals[index]}
}
// TODO(adonovan): add static check that beneath this point
// - there is exactly one return statement
// - there is no redefinition of 'err'.
var iterstack []Iterator // stack of active iterators
// Use defer so that application panics can pass through
// interpreter without leaving thread in a bad state.
defer func() {
// ITERPOP the rest of the iterator stack.
for _, iter := range iterstack {
iter.Done()
}
fr.locals = nil
}()
sp := 0
var pc uint32
var result Value
code := f.Code
loop:
for {
thread.Steps++
if thread.Steps >= thread.maxSteps {
if thread.OnMaxSteps != nil {
thread.OnMaxSteps(thread)
} else {
thread.Cancel("too many steps")
}
}
if reason := atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(&thread.cancelReason))); reason != nil {
err = fmt.Errorf("Starlark computation cancelled: %s", *(*string)(reason))
break loop
}
fr.pc = pc
op := compile.Opcode(code[pc])
pc++
var arg uint32
if op >= compile.OpcodeArgMin {
// TODO(adonovan): opt: profile this.
// Perhaps compiling big endian would be less work to decode?
for s := uint(0); ; s += 7 {
b := code[pc]
pc++
arg |= uint32(b&0x7f) << s
if b < 0x80 {
break
}
}
}
if vmdebug {
fmt.Fprintln(os.Stderr, stack[:sp]) // very verbose!
compile.PrintOp(f, fr.pc, op, arg)
}
switch op {
case compile.NOP:
// nop
case compile.DUP:
stack[sp] = stack[sp-1]
sp++
case compile.DUP2:
stack[sp] = stack[sp-2]
stack[sp+1] = stack[sp-1]
sp += 2
case compile.POP:
sp--
case compile.EXCH:
stack[sp-2], stack[sp-1] = stack[sp-1], stack[sp-2]
case compile.EQL, compile.NEQ, compile.GT, compile.LT, compile.LE, compile.GE:
op := syntax.Token(op-compile.EQL) + syntax.EQL
y := stack[sp-1]
x := stack[sp-2]
sp -= 2
ok, err2 := Compare(op, x, y)
if err2 != nil {
err = err2
break loop
}
stack[sp] = Bool(ok)
sp++
case compile.PLUS,
compile.MINUS,
compile.STAR,
compile.SLASH,
compile.SLASHSLASH,
compile.PERCENT,
compile.AMP,
compile.PIPE,
compile.CIRCUMFLEX,
compile.LTLT,
compile.GTGT,
compile.IN:
binop := syntax.Token(op-compile.PLUS) + syntax.PLUS
if op == compile.IN {
binop = syntax.IN // IN token is out of order
}
y := stack[sp-1]
x := stack[sp-2]
sp -= 2
z, err2 := Binary(binop, x, y)
if err2 != nil {
err = err2
break loop
}
stack[sp] = z
sp++
case compile.UPLUS, compile.UMINUS, compile.TILDE:
var unop syntax.Token
if op == compile.TILDE {
unop = syntax.TILDE
} else {
unop = syntax.Token(op-compile.UPLUS) + syntax.PLUS
}
x := stack[sp-1]
y, err2 := Unary(unop, x)
if err2 != nil {
err = err2
break loop
}
stack[sp-1] = y
case compile.INPLACE_ADD:
y := stack[sp-1]
x := stack[sp-2]
sp -= 2
// It's possible that y is not Iterable but
// nonetheless defines x+y, in which case we
// should fall back to the general case.
var z Value
if xlist, ok := x.(*List); ok {
if yiter, ok := y.(Iterable); ok {
if err = xlist.checkMutable("apply += to"); err != nil {
break loop
}
listExtend(xlist, yiter)
z = xlist
}
}
if z == nil {
z, err = Binary(syntax.PLUS, x, y)
if err != nil {
break loop
}
}
stack[sp] = z
sp++
case compile.INPLACE_PIPE:
y := stack[sp-1]
x := stack[sp-2]
sp -= 2
// It's possible that y is not Dict but
// nonetheless defines x|y, in which case we
// should fall back to the general case.
var z Value
if xdict, ok := x.(*Dict); ok {
if ydict, ok := y.(*Dict); ok {
if err = xdict.ht.checkMutable("apply |= to"); err != nil {
break loop
}
xdict.ht.addAll(&ydict.ht) // can't fail
z = xdict
}
}
if z == nil {
z, err = Binary(syntax.PIPE, x, y)
if err != nil {
break loop
}
}
stack[sp] = z
sp++
case compile.NONE:
stack[sp] = None
sp++
case compile.TRUE:
stack[sp] = True
sp++
case compile.FALSE:
stack[sp] = False
sp++
case compile.MANDATORY:
stack[sp] = mandatory{}
sp++
case compile.JMP:
pc = arg
case compile.CALL, compile.CALL_VAR, compile.CALL_KW, compile.CALL_VAR_KW:
var kwargs Value
if op == compile.CALL_KW || op == compile.CALL_VAR_KW {
kwargs = stack[sp-1]
sp--
}
var args Value
if op == compile.CALL_VAR || op == compile.CALL_VAR_KW {
args = stack[sp-1]
sp--
}
// named args (pairs)
var kvpairs []Tuple
if nkvpairs := int(arg & 0xff); nkvpairs > 0 {
kvpairs = make([]Tuple, 0, nkvpairs)
kvpairsAlloc := make(Tuple, 2*nkvpairs) // allocate a single backing array
sp -= 2 * nkvpairs
for i := 0; i < nkvpairs; i++ {
pair := kvpairsAlloc[:2:2]
kvpairsAlloc = kvpairsAlloc[2:]
pair[0] = stack[sp+2*i] // name
pair[1] = stack[sp+2*i+1] // value
kvpairs = append(kvpairs, pair)
}
}
if kwargs != nil {
// Add key/value items from **kwargs dictionary.
dict, ok := kwargs.(IterableMapping)
if !ok {
err = fmt.Errorf("argument after ** must be a mapping, not %s", kwargs.Type())
break loop
}
items := dict.Items()
for _, item := range items {
if _, ok := item[0].(String); !ok {
err = fmt.Errorf("keywords must be strings, not %s", item[0].Type())
break loop
}
}
if len(kvpairs) == 0 {
kvpairs = items
} else {
kvpairs = append(kvpairs, items...)
}
}
// positional args
var positional Tuple
if npos := int(arg >> 8); npos > 0 {
positional = stack[sp-npos : sp]
sp -= npos
// Copy positional arguments into a new array,
// unless the callee is another Starlark function,
// in which case it can be trusted not to mutate them.
if _, ok := stack[sp-1].(*Function); !ok || args != nil {
positional = append(Tuple(nil), positional...)
}
}
if args != nil {
// Add elements from *args sequence.
iter := Iterate(args)
if iter == nil {
err = fmt.Errorf("argument after * must be iterable, not %s", args.Type())
break loop
}
var elem Value
for iter.Next(&elem) {
positional = append(positional, elem)
}
iter.Done()
}
function := stack[sp-1]
if vmdebug {
fmt.Printf("VM call %s args=%s kwargs=%s @%s\n",
function, positional, kvpairs, f.Position(fr.pc))
}
thread.endProfSpan()
z, err2 := Call(thread, function, positional, kvpairs)
thread.beginProfSpan()
if err2 != nil {
err = err2
break loop
}
if vmdebug {
fmt.Printf("Resuming %s @ %s\n", f.Name, f.Position(0))
}
stack[sp-1] = z
case compile.ITERPUSH:
x := stack[sp-1]
sp--
iter := Iterate(x)
if iter == nil {
err = fmt.Errorf("%s value is not iterable", x.Type())
break loop
}
iterstack = append(iterstack, iter)
case compile.ITERJMP:
iter := iterstack[len(iterstack)-1]
if iter.Next(&stack[sp]) {
sp++
} else {
pc = arg
}
case compile.ITERPOP:
n := len(iterstack) - 1
iterstack[n].Done()
iterstack = iterstack[:n]
case compile.NOT:
stack[sp-1] = !stack[sp-1].Truth()
case compile.RETURN:
result = stack[sp-1]
break loop
case compile.SETINDEX:
z := stack[sp-1]
y := stack[sp-2]
x := stack[sp-3]
sp -= 3
err = setIndex(x, y, z)
if err != nil {
break loop
}
case compile.INDEX:
y := stack[sp-1]
x := stack[sp-2]
sp -= 2
z, err2 := getIndex(x, y)
if err2 != nil {
err = err2
break loop
}
stack[sp] = z
sp++
case compile.ATTR:
x := stack[sp-1]
name := f.Prog.Names[arg]
y, err2 := getAttr(x, name)
if err2 != nil {
err = err2
break loop
}
stack[sp-1] = y
case compile.SETFIELD:
y := stack[sp-1]
x := stack[sp-2]
sp -= 2
name := f.Prog.Names[arg]
if err2 := setField(x, name, y); err2 != nil {
err = err2
break loop
}
case compile.MAKEDICT:
stack[sp] = new(Dict)
sp++
case compile.SETDICT, compile.SETDICTUNIQ:
dict := stack[sp-3].(*Dict)
k := stack[sp-2]
v := stack[sp-1]
sp -= 3
oldlen := dict.Len()
if err2 := dict.SetKey(k, v); err2 != nil {
err = err2
break loop
}
if op == compile.SETDICTUNIQ && dict.Len() == oldlen {
err = fmt.Errorf("duplicate key: %v", k)
break loop
}
case compile.APPEND:
elem := stack[sp-1]
list := stack[sp-2].(*List)
sp -= 2
list.elems = append(list.elems, elem)
case compile.SLICE:
x := stack[sp-4]
lo := stack[sp-3]
hi := stack[sp-2]
step := stack[sp-1]
sp -= 4
res, err2 := slice(x, lo, hi, step)
if err2 != nil {
err = err2
break loop
}
stack[sp] = res
sp++
case compile.UNPACK:
n := int(arg)
iterable := stack[sp-1]
sp--
iter := Iterate(iterable)
if iter == nil {
err = fmt.Errorf("got %s in sequence assignment", iterable.Type())
break loop
}
i := 0
sp += n
for i < n && iter.Next(&stack[sp-1-i]) {
i++
}
var dummy Value
if iter.Next(&dummy) {
// NB: Len may return -1 here in obscure cases.
err = fmt.Errorf("too many values to unpack (got %d, want %d)", Len(iterable), n)
break loop
}
iter.Done()
if i < n {
err = fmt.Errorf("too few values to unpack (got %d, want %d)", i, n)
break loop
}
case compile.CJMP:
if stack[sp-1].Truth() {
pc = arg
}
sp--
case compile.CONSTANT:
stack[sp] = fn.module.constants[arg]
sp++
case compile.MAKETUPLE:
n := int(arg)
tuple := make(Tuple, n)
sp -= n
copy(tuple, stack[sp:])
stack[sp] = tuple
sp++
case compile.MAKELIST:
n := int(arg)
elems := make([]Value, n)
sp -= n
copy(elems, stack[sp:])
stack[sp] = NewList(elems)
sp++
case compile.MAKEFUNC:
funcode := f.Prog.Functions[arg]
tuple := stack[sp-1].(Tuple)
n := len(tuple) - len(funcode.FreeVars)
defaults := tuple[:n:n]
freevars := tuple[n:]
stack[sp-1] = &Function{
funcode: funcode,
module: fn.module,
defaults: defaults,
freevars: freevars,
}
case compile.LOAD:
n := int(arg)
module := string(stack[sp-1].(String))
sp--
if thread.Load == nil {
err = fmt.Errorf("load not implemented by this application")
break loop
}
thread.endProfSpan()
dict, err2 := thread.Load(thread, module)
thread.beginProfSpan()
if err2 != nil {
err = wrappedError{
msg: fmt.Sprintf("cannot load %s: %v", module, err2),
cause: err2,
}
break loop
}
for i := 0; i < n; i++ {
from := string(stack[sp-1-i].(String))
v, ok := dict[from]
if !ok {
err = fmt.Errorf("load: name %s not found in module %s", from, module)
if n := spell.Nearest(from, dict.Keys()); n != "" {
err = fmt.Errorf("%s (did you mean %s?)", err, n)
}
break loop
}
stack[sp-1-i] = v
}
case compile.SETLOCAL:
locals[arg] = stack[sp-1]
sp--
case compile.SETLOCALCELL:
locals[arg].(*cell).v = stack[sp-1]
sp--
case compile.SETGLOBAL:
fn.module.globals[arg] = stack[sp-1]
sp--
case compile.LOCAL:
x := locals[arg]
if x == nil {
err = fmt.Errorf("local variable %s referenced before assignment", f.Locals[arg].Name)
break loop
}
stack[sp] = x
sp++
case compile.FREE:
stack[sp] = fn.freevars[arg]
sp++
case compile.LOCALCELL:
v := locals[arg].(*cell).v
if v == nil {
err = fmt.Errorf("local variable %s referenced before assignment", f.Locals[arg].Name)
break loop
}
stack[sp] = v
sp++
case compile.FREECELL:
v := fn.freevars[arg].(*cell).v
if v == nil {
err = fmt.Errorf("local variable %s referenced before assignment", f.FreeVars[arg].Name)
break loop
}
stack[sp] = v
sp++
case compile.GLOBAL:
x := fn.module.globals[arg]
if x == nil {
err = fmt.Errorf("global variable %s referenced before assignment", f.Prog.Globals[arg].Name)
break loop
}
stack[sp] = x
sp++
case compile.PREDECLARED:
name := f.Prog.Names[arg]
x := fn.module.predeclared[name]
if x == nil {
err = fmt.Errorf("internal error: predeclared variable %s is uninitialized", name)
break loop
}
stack[sp] = x
sp++
case compile.UNIVERSAL:
stack[sp] = Universe[f.Prog.Names[arg]]
sp++
default:
err = fmt.Errorf("unimplemented: %s", op)
break loop
}
}
// (deferred cleanup runs here)
return result, err
}
type wrappedError struct {
msg string
cause error
}
func (e wrappedError) Error() string {
return e.msg
}
// Implements the xerrors.Wrapper interface
// https://godoc.org/golang.org/x/xerrors#Wrapper
func (e wrappedError) Unwrap() error {
return e.cause
}
// mandatory is a sentinel value used in a function's defaults tuple
// to indicate that a (keyword-only) parameter is mandatory.
type mandatory struct{}
func (mandatory) String() string { return "mandatory" }
func (mandatory) Type() string { return "mandatory" }
func (mandatory) Freeze() {} // immutable
func (mandatory) Truth() Bool { return False }
func (mandatory) Hash() (uint32, error) { return 0, nil }
// A cell is a box containing a Value.
// Local variables marked as cells hold their value indirectly
// so that they may be shared by outer and inner nested functions.
// Cells are always accessed using indirect {FREE,LOCAL,SETLOCAL}CELL instructions.
// The FreeVars tuple contains only cells.
// The FREE instruction always yields a cell.
type cell struct{ v Value }
func (c *cell) String() string { return "cell" }
func (c *cell) Type() string { return "cell" }
func (c *cell) Freeze() {
if c.v != nil {
c.v.Freeze()
}
}
func (c *cell) Truth() Bool { panic("unreachable") }
func (c *cell) Hash() (uint32, error) { panic("unreachable") }

118
vendor/go.starlark.net/starlark/iter.go generated vendored Normal file
View file

@ -0,0 +1,118 @@
// Copyright 2024 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.23
package starlark
import (
"fmt"
"iter"
)
func (d *Dict) Entries() iter.Seq2[Value, Value] { return d.ht.entries }
// Elements returns a go1.23 iterator over the elements of the list.
//
// Example:
//
// for elem := range list.Elements() { ... }
func (l *List) Elements() iter.Seq[Value] {
return func(yield func(Value) bool) {
if !l.frozen {
l.itercount++
defer func() { l.itercount-- }()
}
for _, x := range l.elems {
if !yield(x) {
break
}
}
}
}
// Elements returns a go1.23 iterator over the elements of the tuple.
//
// (A Tuple is a slice, so it is of course directly iterable. This
// method exists to provide a fast path for the [Elements] standalone
// function.)
func (t Tuple) Elements() iter.Seq[Value] {
return func(yield func(Value) bool) {
for _, x := range t {
if !yield(x) {
break
}
}
}
}
func (s *Set) Elements() iter.Seq[Value] {
return func(yield func(k Value) bool) {
s.ht.entries(func(k, _ Value) bool { return yield(k) })
}
}
// Elements returns an iterator for the elements of the iterable value.
//
// Example of go1.23 iteration:
//
// for elem := range Elements(iterable) { ... }
//
// Push iterators are provided as a convenience for Go client code. The
// core iteration behavior of Starlark for-loops is defined by the
// [Iterable] interface.
func Elements(iterable Iterable) iter.Seq[Value] {
// Use specialized push iterator if available (*List, Tuple, *Set).
type hasElements interface {
Elements() iter.Seq[Value]
}
if iterable, ok := iterable.(hasElements); ok {
return iterable.Elements()
}
iter := iterable.Iterate()
return func(yield func(Value) bool) {
defer iter.Done()
var x Value
for iter.Next(&x) && yield(x) {
}
}
}
// Entries returns an iterator over the entries (key/value pairs) of
// the iterable mapping.
//
// Example of go1.23 iteration:
//
// for k, v := range Entries(mapping) { ... }
//
// Push iterators are provided as a convenience for Go client code. The
// core iteration behavior of Starlark for-loops is defined by the
// [Iterable] interface.
func Entries(mapping IterableMapping) iter.Seq2[Value, Value] {
// If available (e.g. *Dict), use specialized push iterator,
// as it gets k and v in one shot.
type hasEntries interface {
Entries() iter.Seq2[Value, Value]
}
if mapping, ok := mapping.(hasEntries); ok {
return mapping.Entries()
}
iter := mapping.Iterate()
return func(yield func(k, v Value) bool) {
defer iter.Done()
var k Value
for iter.Next(&k) {
v, found, err := mapping.Get(k)
if err != nil || !found {
panic(fmt.Sprintf("Iterate and Get are inconsistent (mapping=%v, key=%v)",
mapping.Type(), k.Type()))
}
if !yield(k, v) {
break
}
}
}
}

2501
vendor/go.starlark.net/starlark/library.go generated vendored Normal file

File diff suppressed because it is too large Load diff

458
vendor/go.starlark.net/starlark/profile.go generated vendored Normal file
View file

@ -0,0 +1,458 @@
// Copyright 2019 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package starlark
// This file defines a simple execution-time profiler for Starlark.
// It measures the wall time spent executing Starlark code, and emits a
// gzipped protocol message in pprof format (github.com/google/pprof).
//
// When profiling is enabled, the interpreter calls the profiler to
// indicate the start and end of each "span" or time interval. A leaf
// function (whether Go or Starlark) has a single span. A function that
// calls another function has spans for each interval in which it is the
// top of the stack. (A LOAD instruction also ends a span.)
//
// At the start of a span, the interpreter records the current time in
// the thread's topmost frame. At the end of the span, it obtains the
// time again and subtracts the span start time. The difference is added
// to an accumulator variable in the thread. If the accumulator exceeds
// some fixed quantum (10ms, say), the profiler records the current call
// stack and sends it to the profiler goroutine, along with the number
// of quanta, which are subtracted. For example, if the accumulator
// holds 3ms and then a completed span adds 25ms to it, its value is 28ms,
// which exceeds 10ms. The profiler records a stack with the value 20ms
// (2 quanta), and the accumulator is left with 8ms.
//
// The profiler goroutine converts the stacks into the pprof format and
// emits a gzip-compressed protocol message to the designated output
// file. We use a hand-written streaming proto encoder to avoid
// dependencies on pprof and proto, and to avoid the need to
// materialize the profile data structure in memory.
//
// A limitation of this profiler is that it measures wall time, which
// does not necessarily correspond to CPU time. A CPU profiler requires
// that only running (not runnable) threads are sampled; this is
// commonly achieved by having the kernel deliver a (PROF) signal to an
// arbitrary running thread, through setitimer(2). The CPU profiler in the
// Go runtime uses this mechanism, but it is not possible for a Go
// application to register a SIGPROF handler, nor is it possible for a
// Go handler for some other signal to read the stack pointer of
// the interrupted thread.
//
// Two caveats:
// (1) it is tempting to send the leaf Frame directly to the profiler
// goroutine instead of making a copy of the stack, since a Frame is a
// spaghetti stack--a linked list. However, as soon as execution
// resumes, the stack's Frame.pc values may be mutated, so Frames are
// not safe to share with the asynchronous profiler goroutine.
// (2) it is tempting to use Callables as keys in a map when tabulating
// the pprof protocols's Function entities. However, we cannot assume
// that Callables are valid map keys, and furthermore we must not
// pin function values in memory indefinitely as this may cause lambda
// values to keep their free variables live much longer than necessary.
// TODO(adonovan):
// - make Start/Stop fully thread-safe.
// - fix the pc hack.
// - experiment with other values of quantum.
import (
"bufio"
"bytes"
"compress/gzip"
"encoding/binary"
"fmt"
"io"
"log"
"reflect"
"sync/atomic"
"time"
"unsafe"
"go.starlark.net/syntax"
)
// StartProfile enables time profiling of all Starlark threads,
// and writes a profile in pprof format to w.
// It must be followed by a call to StopProfiler to stop
// the profiler and finalize the profile.
//
// StartProfile returns an error if profiling was already enabled.
//
// StartProfile must not be called concurrently with Starlark execution.
func StartProfile(w io.Writer) error {
if !atomic.CompareAndSwapUint32(&profiler.on, 0, 1) {
return fmt.Errorf("profiler already running")
}
// TODO(adonovan): make the API fully concurrency-safe.
// The main challenge is racy reads/writes of profiler.events,
// and of send/close races on the channel it refers to.
// It's easy to solve them with a mutex but harder to do
// it efficiently.
profiler.events = make(chan *profEvent, 1)
profiler.done = make(chan error)
go profile(w)
return nil
}
// StopProfile stops the profiler started by a prior call to
// StartProfile and finalizes the profile. It returns an error if the
// profile could not be completed.
//
// StopProfile must not be called concurrently with Starlark execution.
func StopProfile() error {
// Terminate the profiler goroutine and get its result.
close(profiler.events)
err := <-profiler.done
profiler.done = nil
profiler.events = nil
atomic.StoreUint32(&profiler.on, 0)
return err
}
// globals
var profiler struct {
on uint32 // nonzero => profiler running
events chan *profEvent // profile events from interpreter threads
done chan error // indicates profiler goroutine is ready
}
func (thread *Thread) beginProfSpan() {
if profiler.events == nil {
return // profiling not enabled
}
thread.frameAt(0).spanStart = nanotime()
}
// TODO(adonovan): experiment with smaller values,
// which trade space and time for greater precision.
const quantum = 10 * time.Millisecond
func (thread *Thread) endProfSpan() {
if profiler.events == nil {
return // profiling not enabled
}
// Add the span to the thread's accumulator.
thread.proftime += time.Duration(nanotime() - thread.frameAt(0).spanStart)
if thread.proftime < quantum {
return
}
// Only record complete quanta.
n := thread.proftime / quantum
thread.proftime -= n * quantum
// Copy the stack.
// (We can't save thread.frame because its pc will change.)
ev := &profEvent{
thread: thread,
time: n * quantum,
}
ev.stack = ev.stackSpace[:0]
for i := range thread.stack {
fr := thread.frameAt(i)
ev.stack = append(ev.stack, profFrame{
pos: fr.Position(),
fn: fr.Callable(),
pc: fr.pc,
})
}
profiler.events <- ev
}
type profEvent struct {
thread *Thread // currently unused
time time.Duration
stack []profFrame
stackSpace [8]profFrame // initial space for stack
}
type profFrame struct {
fn Callable // don't hold this live for too long (prevents GC of lambdas)
pc uint32 // program counter (Starlark frames only)
pos syntax.Position // position of pc within this frame
}
// profile is the profiler goroutine.
// It runs until StopProfiler is called.
func profile(w io.Writer) {
// Field numbers from pprof protocol.
// See https://github.com/google/pprof/blob/master/proto/profile.proto
const (
Profile_sample_type = 1 // repeated ValueType
Profile_sample = 2 // repeated Sample
Profile_mapping = 3 // repeated Mapping
Profile_location = 4 // repeated Location
Profile_function = 5 // repeated Function
Profile_string_table = 6 // repeated string
Profile_time_nanos = 9 // int64
Profile_duration_nanos = 10 // int64
Profile_period_type = 11 // ValueType
Profile_period = 12 // int64
ValueType_type = 1 // int64
ValueType_unit = 2 // int64
Sample_location_id = 1 // repeated uint64
Sample_value = 2 // repeated int64
Sample_label = 3 // repeated Label
Label_key = 1 // int64
Label_str = 2 // int64
Label_num = 3 // int64
Label_num_unit = 4 // int64
Location_id = 1 // uint64
Location_mapping_id = 2 // uint64
Location_address = 3 // uint64
Location_line = 4 // repeated Line
Line_function_id = 1 // uint64
Line_line = 2 // int64
Function_id = 1 // uint64
Function_name = 2 // int64
Function_system_name = 3 // int64
Function_filename = 4 // int64
Function_start_line = 5 // int64
)
bufw := bufio.NewWriter(w) // write file in 4KB (not 240B flate-sized) chunks
gz := gzip.NewWriter(bufw)
enc := protoEncoder{w: gz}
// strings
stringIndex := make(map[string]int64)
str := func(s string) int64 {
i, ok := stringIndex[s]
if !ok {
i = int64(len(stringIndex))
enc.string(Profile_string_table, s)
stringIndex[s] = i
}
return i
}
str("") // entry 0
// functions
//
// function returns the ID of a Callable for use in Line.FunctionId.
// The ID is the same as the function's logical address,
// which is supplied by the caller to avoid the need to recompute it.
functionId := make(map[uintptr]uint64)
function := func(fn Callable, addr uintptr) uint64 {
id, ok := functionId[addr]
if !ok {
id = uint64(addr)
var pos syntax.Position
if fn, ok := fn.(callableWithPosition); ok {
pos = fn.Position()
}
name := fn.Name()
if name == "<toplevel>" {
name = pos.Filename()
}
nameIndex := str(name)
fun := new(bytes.Buffer)
funenc := protoEncoder{w: fun}
funenc.uint(Function_id, id)
funenc.int(Function_name, nameIndex)
funenc.int(Function_system_name, nameIndex)
funenc.int(Function_filename, str(pos.Filename()))
funenc.int(Function_start_line, int64(pos.Line))
enc.bytes(Profile_function, fun.Bytes())
functionId[addr] = id
}
return id
}
// locations
//
// location returns the ID of the location denoted by fr.
// For Starlark frames, this is the Frame pc.
locationId := make(map[uintptr]uint64)
location := func(fr profFrame) uint64 {
fnAddr := profFuncAddr(fr.fn)
// For Starlark functions, the frame position
// represents the current PC value.
// Mix it into the low bits of the address.
// This is super hacky and may result in collisions
// in large functions or if functions are numerous.
// TODO(adonovan): fix: try making this cleaner by treating
// each bytecode segment as a Profile.Mapping.
pcAddr := fnAddr
if _, ok := fr.fn.(*Function); ok {
pcAddr = (pcAddr << 16) ^ uintptr(fr.pc)
}
id, ok := locationId[pcAddr]
if !ok {
id = uint64(pcAddr)
line := new(bytes.Buffer)
lineenc := protoEncoder{w: line}
lineenc.uint(Line_function_id, function(fr.fn, fnAddr))
lineenc.int(Line_line, int64(fr.pos.Line))
loc := new(bytes.Buffer)
locenc := protoEncoder{w: loc}
locenc.uint(Location_id, id)
locenc.uint(Location_address, uint64(pcAddr))
locenc.bytes(Location_line, line.Bytes())
enc.bytes(Profile_location, loc.Bytes())
locationId[pcAddr] = id
}
return id
}
wallNanos := new(bytes.Buffer)
wnenc := protoEncoder{w: wallNanos}
wnenc.int(ValueType_type, str("wall"))
wnenc.int(ValueType_unit, str("nanoseconds"))
// informational fields of Profile
enc.bytes(Profile_sample_type, wallNanos.Bytes())
enc.int(Profile_period, quantum.Nanoseconds()) // magnitude of sampling period
enc.bytes(Profile_period_type, wallNanos.Bytes()) // dimension and unit of period
enc.int(Profile_time_nanos, time.Now().UnixNano()) // start (real) time of profile
startNano := nanotime()
// Read profile events from the channel
// until it is closed by StopProfiler.
for e := range profiler.events {
sample := new(bytes.Buffer)
sampleenc := protoEncoder{w: sample}
sampleenc.int(Sample_value, e.time.Nanoseconds()) // wall nanoseconds
for _, fr := range e.stack {
sampleenc.uint(Sample_location_id, location(fr))
}
enc.bytes(Profile_sample, sample.Bytes())
}
endNano := nanotime()
enc.int(Profile_duration_nanos, endNano-startNano)
err := gz.Close() // Close reports any prior write error
if flushErr := bufw.Flush(); err == nil {
err = flushErr
}
profiler.done <- err
}
// nanotime returns the time in nanoseconds since process start.
//
// This approach, described at
// https://github.com/golang/go/issues/61765#issuecomment-1672090302,
// is fast, monotonic, and portable, and avoids the previous
// dependence on runtime.nanotime using the (unsafe) linkname hack.
// In particular, time.Since does less work than time.Now.
//
// Rejected approaches:
//
// Using the linkname hack to unsafely access runtime.nanotime.
// See #546 and golang/go#67401.
//
// // POSIX only. REALTIME not MONOTONIC. 17ns.
// var tv syscall.Timeval
// syscall.Gettimeofday(&tv) // can't fail
// return tv.Nano()
//
// // Portable. REALTIME not MONOTONIC. 46ns.
// return time.Now().Nanoseconds()
//
// // POSIX only. Adds a dependency.
// import "golang.org/x/sys/unix"
// var ts unix.Timespec
// unix.ClockGettime(CLOCK_MONOTONIC, &ts) // can't fail
// return unix.TimespecToNsec(ts)
func nanotime() int64 {
return time.Since(processStart).Nanoseconds()
}
var processStart = time.Now()
// profFuncAddr returns the canonical "address"
// of a Callable for use by the profiler.
func profFuncAddr(fn Callable) uintptr {
switch fn := fn.(type) {
case *Builtin:
return reflect.ValueOf(fn.fn).Pointer()
case *Function:
return uintptr(unsafe.Pointer(fn.funcode))
}
// User-defined callable types are typically of
// kind pointer-to-struct. Handle them specially.
if v := reflect.ValueOf(fn); v.Type().Kind() == reflect.Ptr {
return v.Pointer()
}
// Address zero is reserved by the protocol.
// Use 1 for callables we don't recognize.
log.Printf("Starlark profiler: no address for Callable %T", fn)
return 1
}
// We encode the protocol message by hand to avoid making
// the interpreter depend on both github.com/google/pprof
// and github.com/golang/protobuf.
//
// This also avoids the need to materialize a protocol message object
// tree of unbounded size and serialize it all at the end.
// The pprof format appears to have been designed to
// permit streaming implementations such as this one.
//
// See https://developers.google.com/protocol-buffers/docs/encoding.
type protoEncoder struct {
w io.Writer // *bytes.Buffer or *gzip.Writer
tmp [binary.MaxVarintLen64]byte
}
func (e *protoEncoder) uvarint(x uint64) {
n := binary.PutUvarint(e.tmp[:], x)
e.w.Write(e.tmp[:n])
}
func (e *protoEncoder) tag(field, wire uint) {
e.uvarint(uint64(field<<3 | wire))
}
func (e *protoEncoder) string(field uint, s string) {
e.tag(field, 2) // length-delimited
e.uvarint(uint64(len(s)))
io.WriteString(e.w, s)
}
func (e *protoEncoder) bytes(field uint, b []byte) {
e.tag(field, 2) // length-delimited
e.uvarint(uint64(len(b)))
e.w.Write(b)
}
func (e *protoEncoder) uint(field uint, x uint64) {
e.tag(field, 0) // varint
e.uvarint(x)
}
func (e *protoEncoder) int(field uint, x int64) {
e.tag(field, 0) // varint
e.uvarint(uint64(x))
}

364
vendor/go.starlark.net/starlark/unpack.go generated vendored Normal file
View file

@ -0,0 +1,364 @@
package starlark
// This file defines the Unpack helper functions used by
// built-in functions to interpret their call arguments.
import (
"fmt"
"log"
"reflect"
"strings"
"go.starlark.net/internal/spell"
)
// An Unpacker defines custom argument unpacking behavior.
// See UnpackArgs.
type Unpacker interface {
Unpack(v Value) error
}
// UnpackArgs unpacks the positional and keyword arguments into the
// supplied parameter variables. pairs is an alternating list of names
// and pointers to variables.
//
// If the variable is a bool, integer, string, *List, *Dict, Callable,
// Iterable, or user-defined implementation of Value,
// UnpackArgs performs the appropriate type check.
// Predeclared Go integer types use the AsInt check.
//
// If the parameter name ends with "?", it is optional.
//
// If the parameter name ends with "??", it is optional and treats the None value
// as if the argument was absent.
//
// If a parameter is marked optional, then all following parameters are
// implicitly optional whether or not they are marked.
//
// If the variable implements Unpacker, its Unpack argument
// is called with the argument value, allowing an application
// to define its own argument validation and conversion.
//
// If the variable implements Value, UnpackArgs may call
// its Type() method while constructing the error message.
//
// Examples:
//
// var (
// a Value
// b = MakeInt(42)
// c Value = starlark.None
// )
//
// // 1. mixed parameters, like def f(a, b=42, c=None).
// err := UnpackArgs("f", args, kwargs, "a", &a, "b?", &b, "c?", &c)
//
// // 2. keyword parameters only, like def f(*, a, b, c=None).
// if len(args) > 0 {
// return fmt.Errorf("f: unexpected positional arguments")
// }
// err := UnpackArgs("f", args, kwargs, "a", &a, "b?", &b, "c?", &c)
//
// // 3. positional parameters only, like def f(a, b=42, c=None, /) in Python 3.8.
// err := UnpackPositionalArgs("f", args, kwargs, 1, &a, &b, &c)
//
// More complex forms such as def f(a, b=42, *args, c, d=123, **kwargs)
// require additional logic, but their need in built-ins is exceedingly rare.
//
// In the examples above, the declaration of b with type Int causes UnpackArgs
// to require that b's argument value, if provided, is also an int.
// To allow arguments of any type, while retaining the default value of 42,
// declare b as a Value:
//
// var b Value = MakeInt(42)
//
// The zero value of a variable of type Value, such as 'a' in the
// examples above, is not a valid Starlark value, so if the parameter is
// optional, the caller must explicitly handle the default case by
// interpreting nil as None or some computed default. The same is true
// for the zero values of variables of type *List, *Dict, Callable, or
// Iterable. For example:
//
// // def myfunc(d=None, e=[], f={})
// var (
// d Value
// e *List
// f *Dict
// )
// err := UnpackArgs("myfunc", args, kwargs, "d?", &d, "e?", &e, "f?", &f)
// if d == nil { d = None; }
// if e == nil { e = new(List); }
// if f == nil { f = new(Dict); }
func UnpackArgs(fnname string, args Tuple, kwargs []Tuple, pairs ...any) error {
nparams := len(pairs) / 2
var defined intset
defined.init(nparams)
paramName := func(x any) (name string, skipNone bool) { // (no free variables)
name = x.(string)
if strings.HasSuffix(name, "??") {
name = strings.TrimSuffix(name, "??")
skipNone = true
} else if name[len(name)-1] == '?' {
name = name[:len(name)-1]
}
return name, skipNone
}
// positional arguments
if len(args) > nparams {
return fmt.Errorf("%s: got %d arguments, want at most %d",
fnname, len(args), nparams)
}
for i, arg := range args {
defined.set(i)
name, skipNone := paramName(pairs[2*i])
if skipNone {
if _, isNone := arg.(NoneType); isNone {
continue
}
}
if err := UnpackArg(arg, pairs[2*i+1]); err != nil {
return fmt.Errorf("%s: for parameter %s: %s", fnname, name, err)
}
}
// keyword arguments
kwloop:
for _, item := range kwargs {
name, arg := item[0].(String), item[1]
for i := 0; i < nparams; i++ {
pName, skipNone := paramName(pairs[2*i])
if pName == string(name) {
// found it
if defined.set(i) {
return fmt.Errorf("%s: got multiple values for keyword argument %s",
fnname, name)
}
if skipNone {
if _, isNone := arg.(NoneType); isNone {
continue kwloop
}
}
ptr := pairs[2*i+1]
if err := UnpackArg(arg, ptr); err != nil {
return fmt.Errorf("%s: for parameter %s: %s", fnname, name, err)
}
continue kwloop
}
}
err := fmt.Errorf("%s: unexpected keyword argument %s", fnname, name)
names := make([]string, 0, nparams)
for i := 0; i < nparams; i += 2 {
param, _ := paramName(pairs[i])
names = append(names, param)
}
if n := spell.Nearest(string(name), names); n != "" {
err = fmt.Errorf("%s (did you mean %s?)", err.Error(), n)
}
return err
}
// Check that all non-optional parameters are defined.
for i := 0; i < nparams; i++ {
name := pairs[2*i].(string)
if strings.HasSuffix(name, "?") {
break // optional
}
// (We needn't check the first len(args).)
if i < len(args) {
continue
}
if !defined.get(i) {
return fmt.Errorf("%s: missing argument for %s", fnname, name)
}
}
return nil
}
// UnpackPositionalArgs unpacks the positional arguments into
// corresponding variables. Each element of vars is a pointer; see
// UnpackArgs for allowed types and conversions.
//
// UnpackPositionalArgs reports an error if the number of arguments is
// less than min or greater than len(vars), if kwargs is nonempty, or if
// any conversion fails.
//
// See UnpackArgs for general comments.
func UnpackPositionalArgs(fnname string, args Tuple, kwargs []Tuple, min int, vars ...any) error {
if len(kwargs) > 0 {
return fmt.Errorf("%s: unexpected keyword arguments", fnname)
}
max := len(vars)
if len(args) < min {
var atleast string
if min < max {
atleast = "at least "
}
return fmt.Errorf("%s: got %d arguments, want %s%d", fnname, len(args), atleast, min)
}
if len(args) > max {
var atmost string
if max > min {
atmost = "at most "
}
return fmt.Errorf("%s: got %d arguments, want %s%d", fnname, len(args), atmost, max)
}
for i, arg := range args {
if err := UnpackArg(arg, vars[i]); err != nil {
return fmt.Errorf("%s: for parameter %d: %s", fnname, i+1, err)
}
}
return nil
}
// UnpackArg unpacks a Value v into the variable pointed to by ptr.
// See [UnpackArgs] for details, including which types of variable are supported.
//
// This function defines the unpack operation for a single value.
// The implementations of most built-in functions use [UnpackArgs] and
// [UnpackPositionalArgs] to unpack a sequence of positional and/or
// keyword arguments.
func UnpackArg(v Value, ptr any) error {
// On failure, don't clobber *ptr.
switch ptr := ptr.(type) {
case Unpacker:
return ptr.Unpack(v)
case *Value:
*ptr = v
case *string:
s, ok := AsString(v)
if !ok {
return fmt.Errorf("got %s, want string", v.Type())
}
*ptr = s
case *bool:
b, ok := v.(Bool)
if !ok {
return fmt.Errorf("got %s, want bool", v.Type())
}
*ptr = bool(b)
case *int, *int8, *int16, *int32, *int64,
*uint, *uint8, *uint16, *uint32, *uint64, *uintptr:
return AsInt(v, ptr)
case *float64:
f, ok := v.(Float)
if !ok {
return fmt.Errorf("got %s, want float", v.Type())
}
*ptr = float64(f)
case **List:
list, ok := v.(*List)
if !ok {
return fmt.Errorf("got %s, want list", v.Type())
}
*ptr = list
case **Dict:
dict, ok := v.(*Dict)
if !ok {
return fmt.Errorf("got %s, want dict", v.Type())
}
*ptr = dict
case *Callable:
f, ok := v.(Callable)
if !ok {
return fmt.Errorf("got %s, want callable", v.Type())
}
*ptr = f
case *Iterable:
it, ok := v.(Iterable)
if !ok {
return fmt.Errorf("got %s, want iterable", v.Type())
}
*ptr = it
default:
// v must have type *V, where V is some subtype of starlark.Value.
ptrv := reflect.ValueOf(ptr)
if ptrv.Kind() != reflect.Ptr {
log.Panicf("internal error: not a pointer: %T", ptr)
}
paramVar := ptrv.Elem()
if !reflect.TypeOf(v).AssignableTo(paramVar.Type()) {
// The value is not assignable to the variable.
// Detect a possible bug in the Go program that called Unpack:
// If the variable *ptr is not a subtype of Value,
// no value of v can possibly work.
if !paramVar.Type().AssignableTo(reflect.TypeOf(new(Value)).Elem()) {
log.Panicf("pointer element type does not implement Value: %T", ptr)
}
// Report Starlark dynamic type error.
//
// We prefer the Starlark Value.Type name over
// its Go reflect.Type name, but calling the
// Value.Type method on the variable is not safe
// in general. If the variable is an interface,
// the call will fail. Even if the variable has
// a concrete type, it might not be safe to call
// Type() on a zero instance. Thus we must use
// recover.
// Default to Go reflect.Type name
paramType := paramVar.Type().String()
// Attempt to call Value.Type method.
func() {
defer func() { recover() }()
if typer, _ := paramVar.Interface().(interface{ Type() string }); typer != nil {
paramType = typer.Type()
}
}()
return fmt.Errorf("got %s, want %s", v.Type(), paramType)
}
paramVar.Set(reflect.ValueOf(v))
}
return nil
}
type intset struct {
small uint64 // bitset, used if n < 64
large map[int]bool // set, used if n >= 64
}
func (is *intset) init(n int) {
if n >= 64 {
is.large = make(map[int]bool)
}
}
func (is *intset) set(i int) (prev bool) {
if is.large == nil {
prev = is.small&(1<<uint(i)) != 0
is.small |= 1 << uint(i)
} else {
prev = is.large[i]
is.large[i] = true
}
return
}
func (is *intset) get(i int) bool {
if is.large == nil {
return is.small&(1<<uint(i)) != 0
}
return is.large[i]
}
func (is *intset) len() int {
if is.large == nil {
// Suboptimal, but used only for error reporting.
len := 0
for i := 0; i < 64; i++ {
if is.small&(1<<uint(i)) != 0 {
len++
}
}
return len
}
return len(is.large)
}

1718
vendor/go.starlark.net/starlark/value.go generated vendored Normal file

File diff suppressed because it is too large Load diff

43
vendor/go.starlark.net/starlarkstruct/module.go generated vendored Normal file
View file

@ -0,0 +1,43 @@
package starlarkstruct
import (
"fmt"
"go.starlark.net/starlark"
)
// A Module is a named collection of values,
// typically a suite of functions imported by a load statement.
//
// It differs from Struct primarily in that its string representation
// does not enumerate its fields.
type Module struct {
Name string
Members starlark.StringDict
}
var _ starlark.HasAttrs = (*Module)(nil)
func (m *Module) Attr(name string) (starlark.Value, error) { return m.Members[name], nil }
func (m *Module) AttrNames() []string { return m.Members.Keys() }
func (m *Module) Freeze() { m.Members.Freeze() }
func (m *Module) Hash() (uint32, error) { return 0, fmt.Errorf("unhashable: %s", m.Type()) }
func (m *Module) String() string { return fmt.Sprintf("<module %q>", m.Name) }
func (m *Module) Truth() starlark.Bool { return true }
func (m *Module) Type() string { return "module" }
// MakeModule may be used as the implementation of a Starlark built-in
// function, module(name, **kwargs). It returns a new module with the
// specified name and members.
func MakeModule(thread *starlark.Thread, b *starlark.Builtin, args starlark.Tuple, kwargs []starlark.Tuple) (starlark.Value, error) {
var name string
if err := starlark.UnpackPositionalArgs(b.Name(), args, nil, 1, &name); err != nil {
return nil, err
}
members := make(starlark.StringDict, len(kwargs))
for _, kwarg := range kwargs {
k := string(kwarg[0].(starlark.String))
members[k] = kwarg[1]
}
return &Module{name, members}, nil
}

284
vendor/go.starlark.net/starlarkstruct/struct.go generated vendored Normal file
View file

@ -0,0 +1,284 @@
// Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package starlarkstruct defines the Starlark types 'struct' and
// 'module', both optional language extensions.
package starlarkstruct // import "go.starlark.net/starlarkstruct"
// It is tempting to introduce a variant of Struct that is a wrapper
// around a Go struct value, for stronger typing guarantees and more
// efficient and convenient field lookup. However:
// 1) all fields of Starlark structs are optional, so we cannot represent
// them using more specific types such as String, Int, *Depset, and
// *File, as such types give no way to represent missing fields.
// 2) the efficiency gain of direct struct field access is rather
// marginal: finding the index of a field by binary searching on the
// sorted list of field names is quite fast compared to the other
// overheads.
// 3) the gains in compactness and spatial locality are also rather
// marginal: the array behind the []entry slice is (due to field name
// strings) only a factor of 2 larger than the corresponding Go struct
// would be, and, like the Go struct, requires only a single allocation.
import (
"fmt"
"sort"
"strings"
"go.starlark.net/starlark"
"go.starlark.net/syntax"
)
// Make is the implementation of a built-in function that instantiates
// an immutable struct from the specified keyword arguments.
//
// An application can add 'struct' to the Starlark environment like so:
//
// globals := starlark.StringDict{
// "struct": starlark.NewBuiltin("struct", starlarkstruct.Make),
// }
func Make(_ *starlark.Thread, _ *starlark.Builtin, args starlark.Tuple, kwargs []starlark.Tuple) (starlark.Value, error) {
if len(args) > 0 {
return nil, fmt.Errorf("struct: unexpected positional arguments")
}
return FromKeywords(Default, kwargs), nil
}
// FromKeywords returns a new struct instance whose fields are specified by the
// key/value pairs in kwargs. (Each kwargs[i][0] must be a starlark.String.)
func FromKeywords(constructor starlark.Value, kwargs []starlark.Tuple) *Struct {
if constructor == nil {
panic("nil constructor")
}
s := &Struct{
constructor: constructor,
entries: make(entries, 0, len(kwargs)),
}
for _, kwarg := range kwargs {
k := string(kwarg[0].(starlark.String))
v := kwarg[1]
s.entries = append(s.entries, entry{k, v})
}
sort.Sort(s.entries)
return s
}
// FromStringDict returns a new struct instance whose elements are those of d.
// The constructor parameter specifies the constructor; use Default for an ordinary struct.
func FromStringDict(constructor starlark.Value, d starlark.StringDict) *Struct {
if constructor == nil {
panic("nil constructor")
}
s := &Struct{
constructor: constructor,
entries: make(entries, 0, len(d)),
}
for k, v := range d {
s.entries = append(s.entries, entry{k, v})
}
sort.Sort(s.entries)
return s
}
// Struct is an immutable Starlark type that maps field names to values.
// It is not iterable and does not support len.
//
// A struct has a constructor, a distinct value that identifies a class
// of structs, and which appears in the struct's string representation.
//
// Operations such as x+y fail if the constructors of the two operands
// are not equal.
//
// The default constructor, Default, is the string "struct", but
// clients may wish to 'brand' structs for their own purposes.
// The constructor value appears in the printed form of the value,
// and is accessible using the Constructor method.
//
// Use Attr to access its fields and AttrNames to enumerate them.
type Struct struct {
constructor starlark.Value
entries entries // sorted by name
frozen bool
}
// Default is the default constructor for structs.
// It is merely the string "struct".
const Default = starlark.String("struct")
type entries []entry
func (a entries) Len() int { return len(a) }
func (a entries) Less(i, j int) bool { return a[i].name < a[j].name }
func (a entries) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
type entry struct {
name string
value starlark.Value
}
var (
_ starlark.HasAttrs = (*Struct)(nil)
_ starlark.HasBinary = (*Struct)(nil)
)
// ToStringDict adds a name/value entry to d for each field of the struct.
func (s *Struct) ToStringDict(d starlark.StringDict) {
for _, e := range s.entries {
d[e.name] = e.value
}
}
func (s *Struct) String() string {
buf := new(strings.Builder)
switch constructor := s.constructor.(type) {
case starlark.String:
// NB: The Java implementation always prints struct
// even for Bazel provider instances.
buf.WriteString(constructor.GoString()) // avoid String()'s quotation
default:
buf.WriteString(s.constructor.String())
}
buf.WriteByte('(')
for i, e := range s.entries {
if i > 0 {
buf.WriteString(", ")
}
buf.WriteString(e.name)
buf.WriteString(" = ")
buf.WriteString(e.value.String())
}
buf.WriteByte(')')
return buf.String()
}
// Constructor returns the constructor used to create this struct.
func (s *Struct) Constructor() starlark.Value { return s.constructor }
func (s *Struct) Type() string { return "struct" }
func (s *Struct) Truth() starlark.Bool { return true } // even when empty
func (s *Struct) Hash() (uint32, error) {
// Same algorithm as Tuple.hash, but with different primes.
var x, m uint32 = 8731, 9839
for _, e := range s.entries {
namehash, _ := starlark.String(e.name).Hash()
x = x ^ 3*namehash
y, err := e.value.Hash()
if err != nil {
return 0, err
}
x = x ^ y*m
m += 7349
}
return x, nil
}
func (s *Struct) Freeze() {
if !s.frozen {
s.frozen = true
for _, e := range s.entries {
e.value.Freeze()
}
}
}
func (x *Struct) Binary(op syntax.Token, y starlark.Value, side starlark.Side) (starlark.Value, error) {
if y, ok := y.(*Struct); ok && op == syntax.PLUS {
if side == starlark.Right {
x, y = y, x
}
if eq, err := starlark.Equal(x.constructor, y.constructor); err != nil {
return nil, fmt.Errorf("in %s + %s: error comparing constructors: %v",
x.constructor, y.constructor, err)
} else if !eq {
return nil, fmt.Errorf("cannot add structs of different constructors: %s + %s",
x.constructor, y.constructor)
}
z := make(starlark.StringDict, x.len()+y.len())
for _, e := range x.entries {
z[e.name] = e.value
}
for _, e := range y.entries {
z[e.name] = e.value
}
return FromStringDict(x.constructor, z), nil
}
return nil, nil // unhandled
}
// Attr returns the value of the specified field.
func (s *Struct) Attr(name string) (starlark.Value, error) {
// Binary search the entries.
// This implementation is a specialization of
// sort.Search that avoids dynamic dispatch.
n := len(s.entries)
i, j := 0, n
for i < j {
h := int(uint(i+j) >> 1)
if s.entries[h].name < name {
i = h + 1
} else {
j = h
}
}
if i < n && s.entries[i].name == name {
return s.entries[i].value, nil
}
var ctor string
if s.constructor != Default {
ctor = s.constructor.String() + " "
}
return nil, starlark.NoSuchAttrError(
fmt.Sprintf("%sstruct has no .%s attribute", ctor, name))
}
func (s *Struct) len() int { return len(s.entries) }
// AttrNames returns a new sorted list of the struct fields.
func (s *Struct) AttrNames() []string {
names := make([]string, len(s.entries))
for i, e := range s.entries {
names[i] = e.name
}
return names
}
func (x *Struct) CompareSameType(op syntax.Token, y_ starlark.Value, depth int) (bool, error) {
y := y_.(*Struct)
switch op {
case syntax.EQL:
return structsEqual(x, y, depth)
case syntax.NEQ:
eq, err := structsEqual(x, y, depth)
return !eq, err
default:
return false, fmt.Errorf("%s %s %s not implemented", x.Type(), op, y.Type())
}
}
func structsEqual(x, y *Struct, depth int) (bool, error) {
if x.len() != y.len() {
return false, nil
}
if eq, err := starlark.Equal(x.constructor, y.constructor); err != nil {
return false, fmt.Errorf("error comparing struct constructors %v and %v: %v",
x.constructor, y.constructor, err)
} else if !eq {
return false, nil
}
for i, n := 0, x.len(); i < n; i++ {
if x.entries[i].name != y.entries[i].name {
return false, nil
} else if eq, err := starlark.EqualDepth(x.entries[i].value, y.entries[i].value, depth-1); err != nil {
return false, err
} else if !eq {
return false, nil
}
}
return true, nil
}

129
vendor/go.starlark.net/syntax/grammar.txt generated vendored Normal file
View file

@ -0,0 +1,129 @@
Grammar of Starlark
==================
File = {Statement | newline} eof .
Statement = DefStmt | IfStmt | ForStmt | WhileStmt | SimpleStmt .
DefStmt = 'def' identifier '(' [Parameters [',']] ')' ':' Suite .
Parameters = Parameter {',' Parameter}.
Parameter = identifier | identifier '=' Test | '*' | '*' identifier | '**' identifier .
IfStmt = 'if' Test ':' Suite {'elif' Test ':' Suite} ['else' ':' Suite] .
ForStmt = 'for' LoopVariables 'in' Expression ':' Suite .
WhileStmt = 'while' Test ':' Suite .
Suite = [newline indent {Statement} outdent] | SimpleStmt .
SimpleStmt = SmallStmt {';' SmallStmt} [';'] '\n' .
# NOTE: '\n' optional at EOF
SmallStmt = ReturnStmt
| BreakStmt | ContinueStmt | PassStmt
| AssignStmt
| ExprStmt
| LoadStmt
.
ReturnStmt = 'return' [Expression] .
BreakStmt = 'break' .
ContinueStmt = 'continue' .
PassStmt = 'pass' .
AssignStmt = Expression ('=' | '+=' | '-=' | '*=' | '/=' | '//=' | '%=' | '&=' | '|=' | '^=' | '<<=' | '>>=') Expression .
ExprStmt = Expression .
LoadStmt = 'load' '(' string {',' [identifier '='] string} [','] ')' .
Test = LambdaExpr
| IfExpr
| PrimaryExpr
| UnaryExpr
| BinaryExpr
.
LambdaExpr = 'lambda' [Parameters] ':' Test .
IfExpr = Test 'if' Test 'else' Test .
PrimaryExpr = Operand
| PrimaryExpr DotSuffix
| PrimaryExpr CallSuffix
| PrimaryExpr SliceSuffix
.
Operand = identifier
| int | float | string
| ListExpr | ListComp
| DictExpr | DictComp
| '(' [Expression [',']] ')'
| ('-' | '+') PrimaryExpr
.
DotSuffix = '.' identifier .
CallSuffix = '(' [Arguments [',']] ')' .
SliceSuffix = '[' [Expression] [':' Test [':' Test]] ']' .
Arguments = Argument {',' Argument} .
Argument = Test | identifier '=' Test | '*' Test | '**' Test .
ListExpr = '[' [Expression [',']] ']' .
ListComp = '[' Test {CompClause} ']'.
DictExpr = '{' [Entries [',']] '}' .
DictComp = '{' Entry {CompClause} '}' .
Entries = Entry {',' Entry} .
Entry = Test ':' Test .
CompClause = 'for' LoopVariables 'in' Test | 'if' Test .
UnaryExpr = 'not' Test .
BinaryExpr = Test {Binop Test} .
Binop = 'or'
| 'and'
| '==' | '!=' | '<' | '>' | '<=' | '>=' | 'in' | 'not' 'in'
| '|'
| '^'
| '&'
| '-' | '+'
| '*' | '%' | '/' | '//'
.
Expression = Test {',' Test} .
# NOTE: trailing comma permitted only when within [...] or (...).
LoopVariables = PrimaryExpr {',' PrimaryExpr} .
# Notation (similar to Go spec):
- lowercase and 'quoted' items are lexical tokens.
- Capitalized names denote grammar productions.
- (...) implies grouping
- x | y means either x or y.
- [x] means x is optional
- {x} means x is repeated zero or more times
- The end of each declaration is marked with a period.
# Tokens
- spaces: newline, eof, indent, outdent.
- identifier.
- literals: string, int, float.
- plus all quoted tokens such as '+=', 'return'.
# Notes:
- Ambiguity is resolved using operator precedence.
- The grammar does not enforce the legal order of params and args,
nor that the first compclause must be a 'for'.
TODO:
- explain how the lexer generates indent, outdent, and newline tokens.
- why is unary NOT separated from unary - and +?
- the grammar is (mostly) in LL(1) style so, for example,
dot expressions are formed suffixes, not complete expressions,
which makes the spec harder to read. Reorganize into non-LL(1) form?

63
vendor/go.starlark.net/syntax/options.go generated vendored Normal file
View file

@ -0,0 +1,63 @@
// Copyright 2023 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import _ "unsafe" // for linkname
// FileOptions specifies various per-file options that affect static
// aspects of an individual file such as parsing, name resolution, and
// code generation. (Options that affect global dynamics are typically
// controlled through [go.starlark.net/starlark.Thread].)
//
// The zero value of FileOptions is the default behavior.
//
// Many functions in this package come in two versions: the legacy
// standalone function (such as [Parse]) uses [LegacyFileOptions],
// whereas the more recent method (such as [FileOptions.Parse]) honors the
// provided options. The second form is preferred. In other packages,
// the modern version is a standalone function with a leading
// FileOptions parameter and the name suffix "Options", such as
// [go.starlark.net/starlark.ExecFileOptions].
type FileOptions struct {
// resolver
Set bool // allow references to the 'set' built-in function
While bool // allow 'while' statements
TopLevelControl bool // allow if/for/while statements at top-level
GlobalReassign bool // allow reassignment to top-level names
LoadBindsGlobally bool // load creates global not file-local bindings (deprecated)
// compiler
Recursion bool // disable recursion check for functions in this file
}
// TODO(adonovan): provide a canonical flag parser for FileOptions.
// (And use it in the testdata "options:" strings.)
// LegacyFileOptions returns a new FileOptions containing the current
// values of the resolver package's legacy global variables such as
// [resolve.AllowRecursion], etc.
// These variables may be associated with command-line flags.
func LegacyFileOptions() *FileOptions {
return &FileOptions{
Set: resolverAllowSet,
While: resolverAllowGlobalReassign,
TopLevelControl: resolverAllowGlobalReassign,
GlobalReassign: resolverAllowGlobalReassign,
Recursion: resolverAllowRecursion,
LoadBindsGlobally: resolverLoadBindsGlobally,
}
}
// Access resolver (legacy) flags, if they are linked in; false otherwise.
var (
//go:linkname resolverAllowSet go.starlark.net/resolve.AllowSet
resolverAllowSet bool
//go:linkname resolverAllowGlobalReassign go.starlark.net/resolve.AllowGlobalReassign
resolverAllowGlobalReassign bool
//go:linkname resolverAllowRecursion go.starlark.net/resolve.AllowRecursion
resolverAllowRecursion bool
//go:linkname resolverLoadBindsGlobally go.starlark.net/resolve.LoadBindsGlobally
resolverLoadBindsGlobally bool
)

1062
vendor/go.starlark.net/syntax/parse.go generated vendored Normal file

File diff suppressed because it is too large Load diff

309
vendor/go.starlark.net/syntax/quote.go generated vendored Normal file
View file

@ -0,0 +1,309 @@
// Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
// Starlark quoted string utilities.
import (
"fmt"
"strconv"
"strings"
"unicode"
"unicode/utf8"
)
// unesc maps single-letter chars following \ to their actual values.
var unesc = [256]byte{
'a': '\a',
'b': '\b',
'f': '\f',
'n': '\n',
'r': '\r',
't': '\t',
'v': '\v',
'\\': '\\',
'\'': '\'',
'"': '"',
}
// esc maps escape-worthy bytes to the char that should follow \.
var esc = [256]byte{
'\a': 'a',
'\b': 'b',
'\f': 'f',
'\n': 'n',
'\r': 'r',
'\t': 't',
'\v': 'v',
'\\': '\\',
'\'': '\'',
'"': '"',
}
// unquote unquotes the quoted string, returning the actual
// string value, whether the original was triple-quoted,
// whether it was a byte string, and an error describing invalid input.
func unquote(quoted string) (s string, triple, isByte bool, err error) {
// Check for raw prefix: means don't interpret the inner \.
raw := false
if strings.HasPrefix(quoted, "r") {
raw = true
quoted = quoted[1:]
}
// Check for bytes prefix.
if strings.HasPrefix(quoted, "b") {
isByte = true
quoted = quoted[1:]
}
if len(quoted) < 2 {
err = fmt.Errorf("string literal too short")
return
}
if quoted[0] != '"' && quoted[0] != '\'' || quoted[0] != quoted[len(quoted)-1] {
err = fmt.Errorf("string literal has invalid quotes")
return
}
// Check for triple quoted string.
quote := quoted[0]
if len(quoted) >= 6 && quoted[1] == quote && quoted[2] == quote && quoted[:3] == quoted[len(quoted)-3:] {
triple = true
quoted = quoted[3 : len(quoted)-3]
} else {
quoted = quoted[1 : len(quoted)-1]
}
// Now quoted is the quoted data, but no quotes.
// If we're in raw mode or there are no escapes or
// carriage returns, we're done.
var unquoteChars string
if raw {
unquoteChars = "\r"
} else {
unquoteChars = "\\\r"
}
if !strings.ContainsAny(quoted, unquoteChars) {
s = quoted
return
}
// Otherwise process quoted string.
// Each iteration processes one escape sequence along with the
// plain text leading up to it.
buf := new(strings.Builder)
for {
// Remove prefix before escape sequence.
i := strings.IndexAny(quoted, unquoteChars)
if i < 0 {
i = len(quoted)
}
buf.WriteString(quoted[:i])
quoted = quoted[i:]
if len(quoted) == 0 {
break
}
// Process carriage return.
if quoted[0] == '\r' {
buf.WriteByte('\n')
if len(quoted) > 1 && quoted[1] == '\n' {
quoted = quoted[2:]
} else {
quoted = quoted[1:]
}
continue
}
// Process escape sequence.
if len(quoted) == 1 {
err = fmt.Errorf(`truncated escape sequence \`)
return
}
switch quoted[1] {
default:
// In Starlark, like Go, a backslash must escape something.
// (Python still treats unnecessary backslashes literally,
// but since 3.6 has emitted a deprecation warning.)
err = fmt.Errorf("invalid escape sequence \\%c", quoted[1])
return
case '\n':
// Ignore the escape and the line break.
quoted = quoted[2:]
case 'a', 'b', 'f', 'n', 'r', 't', 'v', '\\', '\'', '"':
// One-char escape.
// Escapes are allowed for both kinds of quotation
// mark, not just the kind in use.
buf.WriteByte(unesc[quoted[1]])
quoted = quoted[2:]
case '0', '1', '2', '3', '4', '5', '6', '7':
// Octal escape, up to 3 digits, \OOO.
n := int(quoted[1] - '0')
quoted = quoted[2:]
for i := 1; i < 3; i++ {
if len(quoted) == 0 || quoted[0] < '0' || '7' < quoted[0] {
break
}
n = n*8 + int(quoted[0]-'0')
quoted = quoted[1:]
}
if !isByte && n > 127 {
err = fmt.Errorf(`non-ASCII octal escape \%o (use \u%04X for the UTF-8 encoding of U+%04X)`, n, n, n)
return
}
if n >= 256 {
// NOTE: Python silently discards the high bit,
// so that '\541' == '\141' == 'a'.
// Let's see if we can avoid doing that in BUILD files.
err = fmt.Errorf(`invalid escape sequence \%03o`, n)
return
}
buf.WriteByte(byte(n))
case 'x':
// Hexadecimal escape, exactly 2 digits, \xXX. [0-127]
if len(quoted) < 4 {
err = fmt.Errorf(`truncated escape sequence %s`, quoted)
return
}
n, err1 := strconv.ParseUint(quoted[2:4], 16, 0)
if err1 != nil {
err = fmt.Errorf(`invalid escape sequence %s`, quoted[:4])
return
}
if !isByte && n > 127 {
err = fmt.Errorf(`non-ASCII hex escape %s (use \u%04X for the UTF-8 encoding of U+%04X)`,
quoted[:4], n, n)
return
}
buf.WriteByte(byte(n))
quoted = quoted[4:]
case 'u', 'U':
// Unicode code point, 4 (\uXXXX) or 8 (\UXXXXXXXX) hex digits.
sz := 6
if quoted[1] == 'U' {
sz = 10
}
if len(quoted) < sz {
err = fmt.Errorf(`truncated escape sequence %s`, quoted)
return
}
n, err1 := strconv.ParseUint(quoted[2:sz], 16, 0)
if err1 != nil {
err = fmt.Errorf(`invalid escape sequence %s`, quoted[:sz])
return
}
if n > unicode.MaxRune {
err = fmt.Errorf(`code point out of range: %s (max \U%08x)`,
quoted[:sz], n)
return
}
// As in Go, surrogates are disallowed.
if 0xD800 <= n && n < 0xE000 {
err = fmt.Errorf(`invalid Unicode code point U+%04X`, n)
return
}
buf.WriteRune(rune(n))
quoted = quoted[sz:]
}
}
s = buf.String()
return
}
// indexByte returns the index of the first instance of b in s, or else -1.
func indexByte(s string, b byte) int {
for i := 0; i < len(s); i++ {
if s[i] == b {
return i
}
}
return -1
}
// Quote returns a Starlark literal that denotes s.
// If b, it returns a bytes literal.
func Quote(s string, b bool) string {
const hex = "0123456789abcdef"
var runeTmp [utf8.UTFMax]byte
buf := make([]byte, 0, 3*len(s)/2)
if b {
buf = append(buf, 'b')
}
buf = append(buf, '"')
for width := 0; len(s) > 0; s = s[width:] {
r := rune(s[0])
width = 1
if r >= utf8.RuneSelf {
r, width = utf8.DecodeRuneInString(s)
}
if width == 1 && r == utf8.RuneError {
// String (!b) literals accept \xXX escapes only for ASCII,
// but we must use them here to represent invalid bytes.
// The result is not a legal literal.
buf = append(buf, `\x`...)
buf = append(buf, hex[s[0]>>4])
buf = append(buf, hex[s[0]&0xF])
continue
}
if r == '"' || r == '\\' { // always backslashed
buf = append(buf, '\\')
buf = append(buf, byte(r))
continue
}
if strconv.IsPrint(r) {
n := utf8.EncodeRune(runeTmp[:], r)
buf = append(buf, runeTmp[:n]...)
continue
}
switch r {
case '\a':
buf = append(buf, `\a`...)
case '\b':
buf = append(buf, `\b`...)
case '\f':
buf = append(buf, `\f`...)
case '\n':
buf = append(buf, `\n`...)
case '\r':
buf = append(buf, `\r`...)
case '\t':
buf = append(buf, `\t`...)
case '\v':
buf = append(buf, `\v`...)
default:
switch {
case r < ' ' || r == 0x7f:
buf = append(buf, `\x`...)
buf = append(buf, hex[byte(r)>>4])
buf = append(buf, hex[byte(r)&0xF])
case r > utf8.MaxRune:
r = 0xFFFD
fallthrough
case r < 0x10000:
buf = append(buf, `\u`...)
for s := 12; s >= 0; s -= 4 {
buf = append(buf, hex[r>>uint(s)&0xF])
}
default:
buf = append(buf, `\U`...)
for s := 28; s >= 0; s -= 4 {
buf = append(buf, hex[r>>uint(s)&0xF])
}
}
}
}
buf = append(buf, '"')
return string(buf)
}

1164
vendor/go.starlark.net/syntax/scan.go generated vendored Normal file

File diff suppressed because it is too large Load diff

529
vendor/go.starlark.net/syntax/syntax.go generated vendored Normal file
View file

@ -0,0 +1,529 @@
// Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package syntax provides a Starlark parser and abstract syntax tree.
package syntax // import "go.starlark.net/syntax"
// A Node is a node in a Starlark syntax tree.
type Node interface {
// Span returns the start and end position of the expression.
Span() (start, end Position)
// Comments returns the comments associated with this node.
// It returns nil if RetainComments was not specified during parsing,
// or if AllocComments was not called.
Comments() *Comments
// AllocComments allocates a new Comments node if there was none.
// This makes possible to add new comments using Comments() method.
AllocComments()
}
// A Comment represents a single # comment.
type Comment struct {
Start Position
Text string // without trailing newline
}
// Comments collects the comments associated with an expression.
type Comments struct {
Before []Comment // whole-line comments before this expression
Suffix []Comment // end-of-line comments after this expression (up to 1)
// For top-level expressions only, After lists whole-line
// comments following the expression.
After []Comment
}
// A commentsRef is a possibly-nil reference to a set of comments.
// A commentsRef is embedded in each type of syntax node,
// and provides its Comments and AllocComments methods.
type commentsRef struct{ ref *Comments }
// Comments returns the comments associated with a syntax node,
// or nil if AllocComments has not yet been called.
func (cr commentsRef) Comments() *Comments { return cr.ref }
// AllocComments enables comments to be associated with a syntax node.
func (cr *commentsRef) AllocComments() {
if cr.ref == nil {
cr.ref = new(Comments)
}
}
// Start returns the start position of the expression.
func Start(n Node) Position {
start, _ := n.Span()
return start
}
// End returns the end position of the expression.
func End(n Node) Position {
_, end := n.Span()
return end
}
// A File represents a Starlark file.
type File struct {
commentsRef
Path string
Stmts []Stmt
Module interface{} // a *resolve.Module, set by resolver
Options *FileOptions
}
func (x *File) Span() (start, end Position) {
if len(x.Stmts) == 0 {
return
}
start, _ = x.Stmts[0].Span()
_, end = x.Stmts[len(x.Stmts)-1].Span()
return start, end
}
// A Stmt is a Starlark statement.
type Stmt interface {
Node
stmt()
}
func (*AssignStmt) stmt() {}
func (*BranchStmt) stmt() {}
func (*DefStmt) stmt() {}
func (*ExprStmt) stmt() {}
func (*ForStmt) stmt() {}
func (*WhileStmt) stmt() {}
func (*IfStmt) stmt() {}
func (*LoadStmt) stmt() {}
func (*ReturnStmt) stmt() {}
// An AssignStmt represents an assignment:
//
// x = 0
// x, y = y, x
// x += 1
type AssignStmt struct {
commentsRef
OpPos Position
Op Token // = EQ | {PLUS,MINUS,STAR,PERCENT}_EQ
LHS Expr
RHS Expr
}
func (x *AssignStmt) Span() (start, end Position) {
start, _ = x.LHS.Span()
_, end = x.RHS.Span()
return
}
// A DefStmt represents a function definition.
type DefStmt struct {
commentsRef
Def Position
Name *Ident
Lparen Position
Params []Expr // param = ident | ident=expr | * | *ident | **ident
Rparen Position
Body []Stmt
Function interface{} // a *resolve.Function, set by resolver
}
func (x *DefStmt) Span() (start, end Position) {
_, end = x.Body[len(x.Body)-1].Span()
return x.Def, end
}
// An ExprStmt is an expression evaluated for side effects.
type ExprStmt struct {
commentsRef
X Expr
}
func (x *ExprStmt) Span() (start, end Position) {
return x.X.Span()
}
// An IfStmt is a conditional: If Cond: True; else: False.
// 'elseif' is desugared into a chain of IfStmts.
type IfStmt struct {
commentsRef
If Position // IF or ELIF
Cond Expr
True []Stmt
ElsePos Position // ELSE or ELIF
False []Stmt // optional
}
func (x *IfStmt) Span() (start, end Position) {
body := x.False
if body == nil {
body = x.True
}
_, end = body[len(body)-1].Span()
return x.If, end
}
// A LoadStmt loads another module and binds names from it:
// load(Module, "x", y="foo").
//
// The AST is slightly unfaithful to the concrete syntax here because
// Starlark's load statement, so that it can be implemented in Python,
// binds some names (like y above) with an identifier and some (like x)
// without. For consistency we create fake identifiers for all the
// strings.
type LoadStmt struct {
commentsRef
Load Position
Module *Literal // a string
From []*Ident // name defined in loading module
To []*Ident // name in loaded module
Rparen Position
}
func (x *LoadStmt) Span() (start, end Position) {
return x.Load, x.Rparen
}
// ModuleName returns the name of the module loaded by this statement.
func (x *LoadStmt) ModuleName() string { return x.Module.Value.(string) }
// A BranchStmt changes the flow of control: break, continue, pass.
type BranchStmt struct {
commentsRef
Token Token // = BREAK | CONTINUE | PASS
TokenPos Position
}
func (x *BranchStmt) Span() (start, end Position) {
return x.TokenPos, x.TokenPos.add(x.Token.String())
}
// A ReturnStmt returns from a function.
type ReturnStmt struct {
commentsRef
Return Position
Result Expr // may be nil
}
func (x *ReturnStmt) Span() (start, end Position) {
if x.Result == nil {
return x.Return, x.Return.add("return")
}
_, end = x.Result.Span()
return x.Return, end
}
// An Expr is a Starlark expression.
type Expr interface {
Node
expr()
}
func (*BinaryExpr) expr() {}
func (*CallExpr) expr() {}
func (*Comprehension) expr() {}
func (*CondExpr) expr() {}
func (*DictEntry) expr() {}
func (*DictExpr) expr() {}
func (*DotExpr) expr() {}
func (*Ident) expr() {}
func (*IndexExpr) expr() {}
func (*LambdaExpr) expr() {}
func (*ListExpr) expr() {}
func (*Literal) expr() {}
func (*ParenExpr) expr() {}
func (*SliceExpr) expr() {}
func (*TupleExpr) expr() {}
func (*UnaryExpr) expr() {}
// An Ident represents an identifier.
type Ident struct {
commentsRef
NamePos Position
Name string
Binding interface{} // a *resolver.Binding, set by resolver
}
func (x *Ident) Span() (start, end Position) {
return x.NamePos, x.NamePos.add(x.Name)
}
// A Literal represents a literal string or number.
type Literal struct {
commentsRef
Token Token // = STRING | BYTES | INT | FLOAT
TokenPos Position
Raw string // uninterpreted text
Value interface{} // = string | int64 | *big.Int | float64
}
func (x *Literal) Span() (start, end Position) {
return x.TokenPos, x.TokenPos.add(x.Raw)
}
// A ParenExpr represents a parenthesized expression: (X).
type ParenExpr struct {
commentsRef
Lparen Position
X Expr
Rparen Position
}
func (x *ParenExpr) Span() (start, end Position) {
return x.Lparen, x.Rparen.add(")")
}
// A CallExpr represents a function call expression: Fn(Args).
type CallExpr struct {
commentsRef
Fn Expr
Lparen Position
Args []Expr // arg = expr | ident=expr | *expr | **expr
Rparen Position
}
func (x *CallExpr) Span() (start, end Position) {
start, _ = x.Fn.Span()
return start, x.Rparen.add(")")
}
// A DotExpr represents a field or method selector: X.Name.
type DotExpr struct {
commentsRef
X Expr
Dot Position
NamePos Position
Name *Ident
}
func (x *DotExpr) Span() (start, end Position) {
start, _ = x.X.Span()
_, end = x.Name.Span()
return
}
// A Comprehension represents a list or dict comprehension:
// [Body for ... if ...] or {Body for ... if ...}
type Comprehension struct {
commentsRef
Curly bool // {x:y for ...} or {x for ...}, not [x for ...]
Lbrack Position
Body Expr
Clauses []Node // = *ForClause | *IfClause
Rbrack Position
}
func (x *Comprehension) Span() (start, end Position) {
return x.Lbrack, x.Rbrack.add("]")
}
// A ForStmt represents a loop: for Vars in X: Body.
type ForStmt struct {
commentsRef
For Position
Vars Expr // name, or tuple of names
X Expr
Body []Stmt
}
func (x *ForStmt) Span() (start, end Position) {
_, end = x.Body[len(x.Body)-1].Span()
return x.For, end
}
// A WhileStmt represents a while loop: while X: Body.
type WhileStmt struct {
commentsRef
While Position
Cond Expr
Body []Stmt
}
func (x *WhileStmt) Span() (start, end Position) {
_, end = x.Body[len(x.Body)-1].Span()
return x.While, end
}
// A ForClause represents a for clause in a list comprehension: for Vars in X.
type ForClause struct {
commentsRef
For Position
Vars Expr // name, or tuple of names
In Position
X Expr
}
func (x *ForClause) Span() (start, end Position) {
_, end = x.X.Span()
return x.For, end
}
// An IfClause represents an if clause in a list comprehension: if Cond.
type IfClause struct {
commentsRef
If Position
Cond Expr
}
func (x *IfClause) Span() (start, end Position) {
_, end = x.Cond.Span()
return x.If, end
}
// A DictExpr represents a dictionary literal: { List }.
type DictExpr struct {
commentsRef
Lbrace Position
List []Expr // all *DictEntrys
Rbrace Position
}
func (x *DictExpr) Span() (start, end Position) {
return x.Lbrace, x.Rbrace.add("}")
}
// A DictEntry represents a dictionary entry: Key: Value.
// Used only within a DictExpr.
type DictEntry struct {
commentsRef
Key Expr
Colon Position
Value Expr
}
func (x *DictEntry) Span() (start, end Position) {
start, _ = x.Key.Span()
_, end = x.Value.Span()
return start, end
}
// A LambdaExpr represents an inline function abstraction.
type LambdaExpr struct {
commentsRef
Lambda Position
Params []Expr // param = ident | ident=expr | * | *ident | **ident
Body Expr
Function interface{} // a *resolve.Function, set by resolver
}
func (x *LambdaExpr) Span() (start, end Position) {
_, end = x.Body.Span()
return x.Lambda, end
}
// A ListExpr represents a list literal: [ List ].
type ListExpr struct {
commentsRef
Lbrack Position
List []Expr
Rbrack Position
}
func (x *ListExpr) Span() (start, end Position) {
return x.Lbrack, x.Rbrack.add("]")
}
// CondExpr represents the conditional: X if COND else ELSE.
type CondExpr struct {
commentsRef
If Position
Cond Expr
True Expr
ElsePos Position
False Expr
}
func (x *CondExpr) Span() (start, end Position) {
start, _ = x.True.Span()
_, end = x.False.Span()
return start, end
}
// A TupleExpr represents a tuple literal: (List).
type TupleExpr struct {
commentsRef
Lparen Position // optional (e.g. in x, y = 0, 1), but required if List is empty
List []Expr
Rparen Position
}
func (x *TupleExpr) Span() (start, end Position) {
if x.Lparen.IsValid() {
return x.Lparen, x.Rparen
} else {
return Start(x.List[0]), End(x.List[len(x.List)-1])
}
}
// A UnaryExpr represents a unary expression: Op X.
//
// As a special case, UnaryOp{Op:Star} may also represent
// the star parameter in def f(*args) or def f(*, x).
type UnaryExpr struct {
commentsRef
OpPos Position
Op Token
X Expr // may be nil if Op==STAR
}
func (x *UnaryExpr) Span() (start, end Position) {
if x.X != nil {
_, end = x.X.Span()
} else {
end = x.OpPos.add("*")
}
return x.OpPos, end
}
// A BinaryExpr represents a binary expression: X Op Y.
//
// As a special case, BinaryExpr{Op:EQ} may also
// represent a named argument in a call f(k=v)
// or a named parameter in a function declaration
// def f(param=default).
type BinaryExpr struct {
commentsRef
X Expr
OpPos Position
Op Token
Y Expr
}
func (x *BinaryExpr) Span() (start, end Position) {
start, _ = x.X.Span()
_, end = x.Y.Span()
return start, end
}
// A SliceExpr represents a slice or substring expression: X[Lo:Hi:Step].
type SliceExpr struct {
commentsRef
X Expr
Lbrack Position
Lo, Hi, Step Expr // all optional
Rbrack Position
}
func (x *SliceExpr) Span() (start, end Position) {
start, _ = x.X.Span()
return start, x.Rbrack
}
// An IndexExpr represents an index expression: X[Y].
type IndexExpr struct {
commentsRef
X Expr
Lbrack Position
Y Expr
Rbrack Position
}
func (x *IndexExpr) Span() (start, end Position) {
start, _ = x.X.Span()
return start, x.Rbrack
}

165
vendor/go.starlark.net/syntax/walk.go generated vendored Normal file
View file

@ -0,0 +1,165 @@
// Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
// Walk traverses a syntax tree in depth-first order.
// It starts by calling f(n); n must not be nil.
// If f returns true, Walk calls itself
// recursively for each non-nil child of n.
// Walk then calls f(nil).
func Walk(n Node, f func(Node) bool) {
if n == nil {
panic("nil")
}
if !f(n) {
return
}
// TODO(adonovan): opt: order cases using profile data.
switch n := n.(type) {
case *File:
walkStmts(n.Stmts, f)
case *ExprStmt:
Walk(n.X, f)
case *BranchStmt:
// no-op
case *IfStmt:
Walk(n.Cond, f)
walkStmts(n.True, f)
walkStmts(n.False, f)
case *AssignStmt:
Walk(n.LHS, f)
Walk(n.RHS, f)
case *DefStmt:
Walk(n.Name, f)
for _, param := range n.Params {
Walk(param, f)
}
walkStmts(n.Body, f)
case *ForStmt:
Walk(n.Vars, f)
Walk(n.X, f)
walkStmts(n.Body, f)
case *WhileStmt:
Walk(n.Cond, f)
walkStmts(n.Body, f)
case *ReturnStmt:
if n.Result != nil {
Walk(n.Result, f)
}
case *LoadStmt:
Walk(n.Module, f)
for _, from := range n.From {
Walk(from, f)
}
for _, to := range n.To {
Walk(to, f)
}
case *Ident, *Literal:
// no-op
case *ListExpr:
for _, x := range n.List {
Walk(x, f)
}
case *ParenExpr:
Walk(n.X, f)
case *CondExpr:
Walk(n.Cond, f)
Walk(n.True, f)
Walk(n.False, f)
case *IndexExpr:
Walk(n.X, f)
Walk(n.Y, f)
case *DictEntry:
Walk(n.Key, f)
Walk(n.Value, f)
case *SliceExpr:
Walk(n.X, f)
if n.Lo != nil {
Walk(n.Lo, f)
}
if n.Hi != nil {
Walk(n.Hi, f)
}
if n.Step != nil {
Walk(n.Step, f)
}
case *Comprehension:
Walk(n.Body, f)
for _, clause := range n.Clauses {
Walk(clause, f)
}
case *IfClause:
Walk(n.Cond, f)
case *ForClause:
Walk(n.Vars, f)
Walk(n.X, f)
case *TupleExpr:
for _, x := range n.List {
Walk(x, f)
}
case *DictExpr:
for _, entry := range n.List {
Walk(entry, f)
}
case *UnaryExpr:
if n.X != nil {
Walk(n.X, f)
}
case *BinaryExpr:
Walk(n.X, f)
Walk(n.Y, f)
case *DotExpr:
Walk(n.X, f)
Walk(n.Name, f)
case *CallExpr:
Walk(n.Fn, f)
for _, arg := range n.Args {
Walk(arg, f)
}
case *LambdaExpr:
for _, param := range n.Params {
Walk(param, f)
}
Walk(n.Body, f)
default:
panic(n)
}
f(nil)
}
func walkStmts(stmts []Stmt, f func(Node) bool) {
for _, stmt := range stmts {
Walk(stmt, f)
}
}

3
vendor/golang.org/x/sys/AUTHORS generated vendored Normal file
View file

@ -0,0 +1,3 @@
# This source code refers to The Go Authors for copyright purposes.
# The master list of authors is in the main Go distribution,
# visible at http://tip.golang.org/AUTHORS.

3
vendor/golang.org/x/sys/CONTRIBUTORS generated vendored Normal file
View file

@ -0,0 +1,3 @@
# This source code was written by the Go contributors.
# The master list of contributors is in the main Go distribution,
# visible at http://tip.golang.org/CONTRIBUTORS.

27
vendor/golang.org/x/sys/LICENSE generated vendored Normal file
View file

@ -0,0 +1,27 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/sys/PATENTS generated vendored Normal file
View file

@ -0,0 +1,22 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

View file

@ -0,0 +1,30 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package unsafeheader contains header declarations for the Go runtime's
// slice and string implementations.
//
// This package allows x/sys to use types equivalent to
// reflect.SliceHeader and reflect.StringHeader without introducing
// a dependency on the (relatively heavy) "reflect" package.
package unsafeheader
import (
"unsafe"
)
// Slice is the runtime representation of a slice.
// It cannot be used safely or portably and its representation may change in a later release.
type Slice struct {
Data unsafe.Pointer
Len int
Cap int
}
// String is the runtime representation of a string.
// It cannot be used safely or portably and its representation may change in a later release.
type String struct {
Data unsafe.Pointer
Len int
}

2
vendor/golang.org/x/sys/unix/.gitignore generated vendored Normal file
View file

@ -0,0 +1,2 @@
_obj/
unix.test

184
vendor/golang.org/x/sys/unix/README.md generated vendored Normal file
View file

@ -0,0 +1,184 @@
# Building `sys/unix`
The sys/unix package provides access to the raw system call interface of the
underlying operating system. See: https://godoc.org/golang.org/x/sys/unix
Porting Go to a new architecture/OS combination or adding syscalls, types, or
constants to an existing architecture/OS pair requires some manual effort;
however, there are tools that automate much of the process.
## Build Systems
There are currently two ways we generate the necessary files. We are currently
migrating the build system to use containers so the builds are reproducible.
This is being done on an OS-by-OS basis. Please update this documentation as
components of the build system change.
### Old Build System (currently for `GOOS != "linux"`)
The old build system generates the Go files based on the C header files
present on your system. This means that files
for a given GOOS/GOARCH pair must be generated on a system with that OS and
architecture. This also means that the generated code can differ from system
to system, based on differences in the header files.
To avoid this, if you are using the old build system, only generate the Go
files on an installation with unmodified header files. It is also important to
keep track of which version of the OS the files were generated from (ex.
Darwin 14 vs Darwin 15). This makes it easier to track the progress of changes
and have each OS upgrade correspond to a single change.
To build the files for your current OS and architecture, make sure GOOS and
GOARCH are set correctly and run `mkall.sh`. This will generate the files for
your specific system. Running `mkall.sh -n` shows the commands that will be run.
Requirements: bash, go
### New Build System (currently for `GOOS == "linux"`)
The new build system uses a Docker container to generate the go files directly
from source checkouts of the kernel and various system libraries. This means
that on any platform that supports Docker, all the files using the new build
system can be generated at once, and generated files will not change based on
what the person running the scripts has installed on their computer.
The OS specific files for the new build system are located in the `${GOOS}`
directory, and the build is coordinated by the `${GOOS}/mkall.go` program. When
the kernel or system library updates, modify the Dockerfile at
`${GOOS}/Dockerfile` to checkout the new release of the source.
To build all the files under the new build system, you must be on an amd64/Linux
system and have your GOOS and GOARCH set accordingly. Running `mkall.sh` will
then generate all of the files for all of the GOOS/GOARCH pairs in the new build
system. Running `mkall.sh -n` shows the commands that will be run.
Requirements: bash, go, docker
## Component files
This section describes the various files used in the code generation process.
It also contains instructions on how to modify these files to add a new
architecture/OS or to add additional syscalls, types, or constants. Note that
if you are using the new build system, the scripts/programs cannot be called normally.
They must be called from within the docker container.
### asm files
The hand-written assembly file at `asm_${GOOS}_${GOARCH}.s` implements system
call dispatch. There are three entry points:
```
func Syscall(trap, a1, a2, a3 uintptr) (r1, r2, err uintptr)
func Syscall6(trap, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2, err uintptr)
func RawSyscall(trap, a1, a2, a3 uintptr) (r1, r2, err uintptr)
```
The first and second are the standard ones; they differ only in how many
arguments can be passed to the kernel. The third is for low-level use by the
ForkExec wrapper. Unlike the first two, it does not call into the scheduler to
let it know that a system call is running.
When porting Go to a new architecture/OS, this file must be implemented for
each GOOS/GOARCH pair.
### mksysnum
Mksysnum is a Go program located at `${GOOS}/mksysnum.go` (or `mksysnum_${GOOS}.go`
for the old system). This program takes in a list of header files containing the
syscall number declarations and parses them to produce the corresponding list of
Go numeric constants. See `zsysnum_${GOOS}_${GOARCH}.go` for the generated
constants.
Adding new syscall numbers is mostly done by running the build on a sufficiently
new installation of the target OS (or updating the source checkouts for the
new build system). However, depending on the OS, you may need to update the
parsing in mksysnum.
### mksyscall.go
The `syscall.go`, `syscall_${GOOS}.go`, `syscall_${GOOS}_${GOARCH}.go` are
hand-written Go files which implement system calls (for unix, the specific OS,
or the specific OS/Architecture pair respectively) that need special handling
and list `//sys` comments giving prototypes for ones that can be generated.
The mksyscall.go program takes the `//sys` and `//sysnb` comments and converts
them into syscalls. This requires the name of the prototype in the comment to
match a syscall number in the `zsysnum_${GOOS}_${GOARCH}.go` file. The function
prototype can be exported (capitalized) or not.
Adding a new syscall often just requires adding a new `//sys` function prototype
with the desired arguments and a capitalized name so it is exported. However, if
you want the interface to the syscall to be different, often one will make an
unexported `//sys` prototype, and then write a custom wrapper in
`syscall_${GOOS}.go`.
### types files
For each OS, there is a hand-written Go file at `${GOOS}/types.go` (or
`types_${GOOS}.go` on the old system). This file includes standard C headers and
creates Go type aliases to the corresponding C types. The file is then fed
through godef to get the Go compatible definitions. Finally, the generated code
is fed though mkpost.go to format the code correctly and remove any hidden or
private identifiers. This cleaned-up code is written to
`ztypes_${GOOS}_${GOARCH}.go`.
The hardest part about preparing this file is figuring out which headers to
include and which symbols need to be `#define`d to get the actual data
structures that pass through to the kernel system calls. Some C libraries
preset alternate versions for binary compatibility and translate them on the
way in and out of system calls, but there is almost always a `#define` that can
get the real ones.
See `types_darwin.go` and `linux/types.go` for examples.
To add a new type, add in the necessary include statement at the top of the
file (if it is not already there) and add in a type alias line. Note that if
your type is significantly different on different architectures, you may need
some `#if/#elif` macros in your include statements.
### mkerrors.sh
This script is used to generate the system's various constants. This doesn't
just include the error numbers and error strings, but also the signal numbers
and a wide variety of miscellaneous constants. The constants come from the list
of include files in the `includes_${uname}` variable. A regex then picks out
the desired `#define` statements, and generates the corresponding Go constants.
The error numbers and strings are generated from `#include <errno.h>`, and the
signal numbers and strings are generated from `#include <signal.h>`. All of
these constants are written to `zerrors_${GOOS}_${GOARCH}.go` via a C program,
`_errors.c`, which prints out all the constants.
To add a constant, add the header that includes it to the appropriate variable.
Then, edit the regex (if necessary) to match the desired constant. Avoid making
the regex too broad to avoid matching unintended constants.
### internal/mkmerge
This program is used to extract duplicate const, func, and type declarations
from the generated architecture-specific files listed below, and merge these
into a common file for each OS.
The merge is performed in the following steps:
1. Construct the set of common code that is idential in all architecture-specific files.
2. Write this common code to the merged file.
3. Remove the common code from all architecture-specific files.
## Generated files
### `zerrors_${GOOS}_${GOARCH}.go`
A file containing all of the system's generated error numbers, error strings,
signal numbers, and constants. Generated by `mkerrors.sh` (see above).
### `zsyscall_${GOOS}_${GOARCH}.go`
A file containing all the generated syscalls for a specific GOOS and GOARCH.
Generated by `mksyscall.go` (see above).
### `zsysnum_${GOOS}_${GOARCH}.go`
A list of numeric constants for all the syscall number of the specific GOOS
and GOARCH. Generated by mksysnum (see above).
### `ztypes_${GOOS}_${GOARCH}.go`
A file containing Go types for passing into (or returning from) syscalls.
Generated by godefs and the types file (see above).

86
vendor/golang.org/x/sys/unix/affinity_linux.go generated vendored Normal file
View file

@ -0,0 +1,86 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// CPU affinity functions
package unix
import (
"math/bits"
"unsafe"
)
const cpuSetSize = _CPU_SETSIZE / _NCPUBITS
// CPUSet represents a CPU affinity mask.
type CPUSet [cpuSetSize]cpuMask
func schedAffinity(trap uintptr, pid int, set *CPUSet) error {
_, _, e := RawSyscall(trap, uintptr(pid), uintptr(unsafe.Sizeof(*set)), uintptr(unsafe.Pointer(set)))
if e != 0 {
return errnoErr(e)
}
return nil
}
// SchedGetaffinity gets the CPU affinity mask of the thread specified by pid.
// If pid is 0 the calling thread is used.
func SchedGetaffinity(pid int, set *CPUSet) error {
return schedAffinity(SYS_SCHED_GETAFFINITY, pid, set)
}
// SchedSetaffinity sets the CPU affinity mask of the thread specified by pid.
// If pid is 0 the calling thread is used.
func SchedSetaffinity(pid int, set *CPUSet) error {
return schedAffinity(SYS_SCHED_SETAFFINITY, pid, set)
}
// Zero clears the set s, so that it contains no CPUs.
func (s *CPUSet) Zero() {
for i := range s {
s[i] = 0
}
}
func cpuBitsIndex(cpu int) int {
return cpu / _NCPUBITS
}
func cpuBitsMask(cpu int) cpuMask {
return cpuMask(1 << (uint(cpu) % _NCPUBITS))
}
// Set adds cpu to the set s.
func (s *CPUSet) Set(cpu int) {
i := cpuBitsIndex(cpu)
if i < len(s) {
s[i] |= cpuBitsMask(cpu)
}
}
// Clear removes cpu from the set s.
func (s *CPUSet) Clear(cpu int) {
i := cpuBitsIndex(cpu)
if i < len(s) {
s[i] &^= cpuBitsMask(cpu)
}
}
// IsSet reports whether cpu is in the set s.
func (s *CPUSet) IsSet(cpu int) bool {
i := cpuBitsIndex(cpu)
if i < len(s) {
return s[i]&cpuBitsMask(cpu) != 0
}
return false
}
// Count returns the number of CPUs in the set s.
func (s *CPUSet) Count() int {
c := 0
for _, b := range s {
c += bits.OnesCount64(uint64(b))
}
return c
}

15
vendor/golang.org/x/sys/unix/aliases.go generated vendored Normal file
View file

@ -0,0 +1,15 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build (aix || darwin || dragonfly || freebsd || linux || netbsd || openbsd || solaris || zos) && go1.9
// +build aix darwin dragonfly freebsd linux netbsd openbsd solaris zos
// +build go1.9
package unix
import "syscall"
type Signal = syscall.Signal
type Errno = syscall.Errno
type SysProcAttr = syscall.SysProcAttr

18
vendor/golang.org/x/sys/unix/asm_aix_ppc64.s generated vendored Normal file
View file

@ -0,0 +1,18 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build gc
// +build gc
#include "textflag.h"
//
// System calls for ppc64, AIX are implemented in runtime/syscall_aix.go
//
TEXT ·syscall6(SB),NOSPLIT,$0-88
JMP syscall·syscall6(SB)
TEXT ·rawSyscall6(SB),NOSPLIT,$0-88
JMP syscall·rawSyscall6(SB)

29
vendor/golang.org/x/sys/unix/asm_bsd_386.s generated vendored Normal file
View file

@ -0,0 +1,29 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build (freebsd || netbsd || openbsd) && gc
// +build freebsd netbsd openbsd
// +build gc
#include "textflag.h"
// System call support for 386 BSD
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-28
JMP syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-40
JMP syscall·Syscall6(SB)
TEXT ·Syscall9(SB),NOSPLIT,$0-52
JMP syscall·Syscall9(SB)
TEXT ·RawSyscall(SB),NOSPLIT,$0-28
JMP syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-40
JMP syscall·RawSyscall6(SB)

29
vendor/golang.org/x/sys/unix/asm_bsd_amd64.s generated vendored Normal file
View file

@ -0,0 +1,29 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build (darwin || dragonfly || freebsd || netbsd || openbsd) && gc
// +build darwin dragonfly freebsd netbsd openbsd
// +build gc
#include "textflag.h"
// System call support for AMD64 BSD
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-56
JMP syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-80
JMP syscall·Syscall6(SB)
TEXT ·Syscall9(SB),NOSPLIT,$0-104
JMP syscall·Syscall9(SB)
TEXT ·RawSyscall(SB),NOSPLIT,$0-56
JMP syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-80
JMP syscall·RawSyscall6(SB)

29
vendor/golang.org/x/sys/unix/asm_bsd_arm.s generated vendored Normal file
View file

@ -0,0 +1,29 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build (freebsd || netbsd || openbsd) && gc
// +build freebsd netbsd openbsd
// +build gc
#include "textflag.h"
// System call support for ARM BSD
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-28
B syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-40
B syscall·Syscall6(SB)
TEXT ·Syscall9(SB),NOSPLIT,$0-52
B syscall·Syscall9(SB)
TEXT ·RawSyscall(SB),NOSPLIT,$0-28
B syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-40
B syscall·RawSyscall6(SB)

29
vendor/golang.org/x/sys/unix/asm_bsd_arm64.s generated vendored Normal file
View file

@ -0,0 +1,29 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build (darwin || freebsd || netbsd || openbsd) && gc
// +build darwin freebsd netbsd openbsd
// +build gc
#include "textflag.h"
// System call support for ARM64 BSD
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-56
JMP syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-80
JMP syscall·Syscall6(SB)
TEXT ·Syscall9(SB),NOSPLIT,$0-104
JMP syscall·Syscall9(SB)
TEXT ·RawSyscall(SB),NOSPLIT,$0-56
JMP syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-80
JMP syscall·RawSyscall6(SB)

29
vendor/golang.org/x/sys/unix/asm_bsd_riscv64.s generated vendored Normal file
View file

@ -0,0 +1,29 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build (darwin || freebsd || netbsd || openbsd) && gc
// +build darwin freebsd netbsd openbsd
// +build gc
#include "textflag.h"
// System call support for RISCV64 BSD
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-56
JMP syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-80
JMP syscall·Syscall6(SB)
TEXT ·Syscall9(SB),NOSPLIT,$0-104
JMP syscall·Syscall9(SB)
TEXT ·RawSyscall(SB),NOSPLIT,$0-56
JMP syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-80
JMP syscall·RawSyscall6(SB)

66
vendor/golang.org/x/sys/unix/asm_linux_386.s generated vendored Normal file
View file

@ -0,0 +1,66 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build gc
// +build gc
#include "textflag.h"
//
// System calls for 386, Linux
//
// See ../runtime/sys_linux_386.s for the reason why we always use int 0x80
// instead of the glibc-specific "CALL 0x10(GS)".
#define INVOKE_SYSCALL INT $0x80
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-28
JMP syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-40
JMP syscall·Syscall6(SB)
TEXT ·SyscallNoError(SB),NOSPLIT,$0-24
CALL runtime·entersyscall(SB)
MOVL trap+0(FP), AX // syscall entry
MOVL a1+4(FP), BX
MOVL a2+8(FP), CX
MOVL a3+12(FP), DX
MOVL $0, SI
MOVL $0, DI
INVOKE_SYSCALL
MOVL AX, r1+16(FP)
MOVL DX, r2+20(FP)
CALL runtime·exitsyscall(SB)
RET
TEXT ·RawSyscall(SB),NOSPLIT,$0-28
JMP syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-40
JMP syscall·RawSyscall6(SB)
TEXT ·RawSyscallNoError(SB),NOSPLIT,$0-24
MOVL trap+0(FP), AX // syscall entry
MOVL a1+4(FP), BX
MOVL a2+8(FP), CX
MOVL a3+12(FP), DX
MOVL $0, SI
MOVL $0, DI
INVOKE_SYSCALL
MOVL AX, r1+16(FP)
MOVL DX, r2+20(FP)
RET
TEXT ·socketcall(SB),NOSPLIT,$0-36
JMP syscall·socketcall(SB)
TEXT ·rawsocketcall(SB),NOSPLIT,$0-36
JMP syscall·rawsocketcall(SB)
TEXT ·seek(SB),NOSPLIT,$0-28
JMP syscall·seek(SB)

58
vendor/golang.org/x/sys/unix/asm_linux_amd64.s generated vendored Normal file
View file

@ -0,0 +1,58 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build gc
// +build gc
#include "textflag.h"
//
// System calls for AMD64, Linux
//
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-56
JMP syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-80
JMP syscall·Syscall6(SB)
TEXT ·SyscallNoError(SB),NOSPLIT,$0-48
CALL runtime·entersyscall(SB)
MOVQ a1+8(FP), DI
MOVQ a2+16(FP), SI
MOVQ a3+24(FP), DX
MOVQ $0, R10
MOVQ $0, R8
MOVQ $0, R9
MOVQ trap+0(FP), AX // syscall entry
SYSCALL
MOVQ AX, r1+32(FP)
MOVQ DX, r2+40(FP)
CALL runtime·exitsyscall(SB)
RET
TEXT ·RawSyscall(SB),NOSPLIT,$0-56
JMP syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-80
JMP syscall·RawSyscall6(SB)
TEXT ·RawSyscallNoError(SB),NOSPLIT,$0-48
MOVQ a1+8(FP), DI
MOVQ a2+16(FP), SI
MOVQ a3+24(FP), DX
MOVQ $0, R10
MOVQ $0, R8
MOVQ $0, R9
MOVQ trap+0(FP), AX // syscall entry
SYSCALL
MOVQ AX, r1+32(FP)
MOVQ DX, r2+40(FP)
RET
TEXT ·gettimeofday(SB),NOSPLIT,$0-16
JMP syscall·gettimeofday(SB)

57
vendor/golang.org/x/sys/unix/asm_linux_arm.s generated vendored Normal file
View file

@ -0,0 +1,57 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build gc
// +build gc
#include "textflag.h"
//
// System calls for arm, Linux
//
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-28
B syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-40
B syscall·Syscall6(SB)
TEXT ·SyscallNoError(SB),NOSPLIT,$0-24
BL runtime·entersyscall(SB)
MOVW trap+0(FP), R7
MOVW a1+4(FP), R0
MOVW a2+8(FP), R1
MOVW a3+12(FP), R2
MOVW $0, R3
MOVW $0, R4
MOVW $0, R5
SWI $0
MOVW R0, r1+16(FP)
MOVW $0, R0
MOVW R0, r2+20(FP)
BL runtime·exitsyscall(SB)
RET
TEXT ·RawSyscall(SB),NOSPLIT,$0-28
B syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-40
B syscall·RawSyscall6(SB)
TEXT ·RawSyscallNoError(SB),NOSPLIT,$0-24
MOVW trap+0(FP), R7 // syscall entry
MOVW a1+4(FP), R0
MOVW a2+8(FP), R1
MOVW a3+12(FP), R2
SWI $0
MOVW R0, r1+16(FP)
MOVW $0, R0
MOVW R0, r2+20(FP)
RET
TEXT ·seek(SB),NOSPLIT,$0-28
B syscall·seek(SB)

53
vendor/golang.org/x/sys/unix/asm_linux_arm64.s generated vendored Normal file
View file

@ -0,0 +1,53 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build linux && arm64 && gc
// +build linux
// +build arm64
// +build gc
#include "textflag.h"
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-56
B syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-80
B syscall·Syscall6(SB)
TEXT ·SyscallNoError(SB),NOSPLIT,$0-48
BL runtime·entersyscall(SB)
MOVD a1+8(FP), R0
MOVD a2+16(FP), R1
MOVD a3+24(FP), R2
MOVD $0, R3
MOVD $0, R4
MOVD $0, R5
MOVD trap+0(FP), R8 // syscall entry
SVC
MOVD R0, r1+32(FP) // r1
MOVD R1, r2+40(FP) // r2
BL runtime·exitsyscall(SB)
RET
TEXT ·RawSyscall(SB),NOSPLIT,$0-56
B syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-80
B syscall·RawSyscall6(SB)
TEXT ·RawSyscallNoError(SB),NOSPLIT,$0-48
MOVD a1+8(FP), R0
MOVD a2+16(FP), R1
MOVD a3+24(FP), R2
MOVD $0, R3
MOVD $0, R4
MOVD $0, R5
MOVD trap+0(FP), R8 // syscall entry
SVC
MOVD R0, r1+32(FP)
MOVD R1, r2+40(FP)
RET

54
vendor/golang.org/x/sys/unix/asm_linux_loong64.s generated vendored Normal file
View file

@ -0,0 +1,54 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build linux && loong64 && gc
// +build linux
// +build loong64
// +build gc
#include "textflag.h"
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-56
JMP syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-80
JMP syscall·Syscall6(SB)
TEXT ·SyscallNoError(SB),NOSPLIT,$0-48
JAL runtime·entersyscall(SB)
MOVV a1+8(FP), R4
MOVV a2+16(FP), R5
MOVV a3+24(FP), R6
MOVV R0, R7
MOVV R0, R8
MOVV R0, R9
MOVV trap+0(FP), R11 // syscall entry
SYSCALL
MOVV R4, r1+32(FP)
MOVV R0, r2+40(FP) // r2 is not used. Always set to 0
JAL runtime·exitsyscall(SB)
RET
TEXT ·RawSyscall(SB),NOSPLIT,$0-56
JMP syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-80
JMP syscall·RawSyscall6(SB)
TEXT ·RawSyscallNoError(SB),NOSPLIT,$0-48
MOVV a1+8(FP), R4
MOVV a2+16(FP), R5
MOVV a3+24(FP), R6
MOVV R0, R7
MOVV R0, R8
MOVV R0, R9
MOVV trap+0(FP), R11 // syscall entry
SYSCALL
MOVV R4, r1+32(FP)
MOVV R0, r2+40(FP) // r2 is not used. Always set to 0
RET

57
vendor/golang.org/x/sys/unix/asm_linux_mips64x.s generated vendored Normal file
View file

@ -0,0 +1,57 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build linux && (mips64 || mips64le) && gc
// +build linux
// +build mips64 mips64le
// +build gc
#include "textflag.h"
//
// System calls for mips64, Linux
//
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-56
JMP syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-80
JMP syscall·Syscall6(SB)
TEXT ·SyscallNoError(SB),NOSPLIT,$0-48
JAL runtime·entersyscall(SB)
MOVV a1+8(FP), R4
MOVV a2+16(FP), R5
MOVV a3+24(FP), R6
MOVV R0, R7
MOVV R0, R8
MOVV R0, R9
MOVV trap+0(FP), R2 // syscall entry
SYSCALL
MOVV R2, r1+32(FP)
MOVV R3, r2+40(FP)
JAL runtime·exitsyscall(SB)
RET
TEXT ·RawSyscall(SB),NOSPLIT,$0-56
JMP syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-80
JMP syscall·RawSyscall6(SB)
TEXT ·RawSyscallNoError(SB),NOSPLIT,$0-48
MOVV a1+8(FP), R4
MOVV a2+16(FP), R5
MOVV a3+24(FP), R6
MOVV R0, R7
MOVV R0, R8
MOVV R0, R9
MOVV trap+0(FP), R2 // syscall entry
SYSCALL
MOVV R2, r1+32(FP)
MOVV R3, r2+40(FP)
RET

55
vendor/golang.org/x/sys/unix/asm_linux_mipsx.s generated vendored Normal file
View file

@ -0,0 +1,55 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build linux && (mips || mipsle) && gc
// +build linux
// +build mips mipsle
// +build gc
#include "textflag.h"
//
// System calls for mips, Linux
//
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-28
JMP syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-40
JMP syscall·Syscall6(SB)
TEXT ·Syscall9(SB),NOSPLIT,$0-52
JMP syscall·Syscall9(SB)
TEXT ·SyscallNoError(SB),NOSPLIT,$0-24
JAL runtime·entersyscall(SB)
MOVW a1+4(FP), R4
MOVW a2+8(FP), R5
MOVW a3+12(FP), R6
MOVW R0, R7
MOVW trap+0(FP), R2 // syscall entry
SYSCALL
MOVW R2, r1+16(FP) // r1
MOVW R3, r2+20(FP) // r2
JAL runtime·exitsyscall(SB)
RET
TEXT ·RawSyscall(SB),NOSPLIT,$0-28
JMP syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-40
JMP syscall·RawSyscall6(SB)
TEXT ·RawSyscallNoError(SB),NOSPLIT,$0-24
MOVW a1+4(FP), R4
MOVW a2+8(FP), R5
MOVW a3+12(FP), R6
MOVW trap+0(FP), R2 // syscall entry
SYSCALL
MOVW R2, r1+16(FP)
MOVW R3, r2+20(FP)
RET

45
vendor/golang.org/x/sys/unix/asm_linux_ppc64x.s generated vendored Normal file
View file

@ -0,0 +1,45 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build linux && (ppc64 || ppc64le) && gc
// +build linux
// +build ppc64 ppc64le
// +build gc
#include "textflag.h"
//
// System calls for ppc64, Linux
//
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·SyscallNoError(SB),NOSPLIT,$0-48
BL runtime·entersyscall(SB)
MOVD a1+8(FP), R3
MOVD a2+16(FP), R4
MOVD a3+24(FP), R5
MOVD R0, R6
MOVD R0, R7
MOVD R0, R8
MOVD trap+0(FP), R9 // syscall entry
SYSCALL R9
MOVD R3, r1+32(FP)
MOVD R4, r2+40(FP)
BL runtime·exitsyscall(SB)
RET
TEXT ·RawSyscallNoError(SB),NOSPLIT,$0-48
MOVD a1+8(FP), R3
MOVD a2+16(FP), R4
MOVD a3+24(FP), R5
MOVD R0, R6
MOVD R0, R7
MOVD R0, R8
MOVD trap+0(FP), R9 // syscall entry
SYSCALL R9
MOVD R3, r1+32(FP)
MOVD R4, r2+40(FP)
RET

49
vendor/golang.org/x/sys/unix/asm_linux_riscv64.s generated vendored Normal file
View file

@ -0,0 +1,49 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build riscv64 && gc
// +build riscv64
// +build gc
#include "textflag.h"
//
// System calls for linux/riscv64.
//
// Where available, just jump to package syscall's implementation of
// these functions.
TEXT ·Syscall(SB),NOSPLIT,$0-56
JMP syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-80
JMP syscall·Syscall6(SB)
TEXT ·SyscallNoError(SB),NOSPLIT,$0-48
CALL runtime·entersyscall(SB)
MOV a1+8(FP), A0
MOV a2+16(FP), A1
MOV a3+24(FP), A2
MOV trap+0(FP), A7 // syscall entry
ECALL
MOV A0, r1+32(FP) // r1
MOV A1, r2+40(FP) // r2
CALL runtime·exitsyscall(SB)
RET
TEXT ·RawSyscall(SB),NOSPLIT,$0-56
JMP syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-80
JMP syscall·RawSyscall6(SB)
TEXT ·RawSyscallNoError(SB),NOSPLIT,$0-48
MOV a1+8(FP), A0
MOV a2+16(FP), A1
MOV a3+24(FP), A2
MOV trap+0(FP), A7 // syscall entry
ECALL
MOV A0, r1+32(FP)
MOV A1, r2+40(FP)
RET

57
vendor/golang.org/x/sys/unix/asm_linux_s390x.s generated vendored Normal file
View file

@ -0,0 +1,57 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build linux && s390x && gc
// +build linux
// +build s390x
// +build gc
#include "textflag.h"
//
// System calls for s390x, Linux
//
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-56
BR syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-80
BR syscall·Syscall6(SB)
TEXT ·SyscallNoError(SB),NOSPLIT,$0-48
BL runtime·entersyscall(SB)
MOVD a1+8(FP), R2
MOVD a2+16(FP), R3
MOVD a3+24(FP), R4
MOVD $0, R5
MOVD $0, R6
MOVD $0, R7
MOVD trap+0(FP), R1 // syscall entry
SYSCALL
MOVD R2, r1+32(FP)
MOVD R3, r2+40(FP)
BL runtime·exitsyscall(SB)
RET
TEXT ·RawSyscall(SB),NOSPLIT,$0-56
BR syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-80
BR syscall·RawSyscall6(SB)
TEXT ·RawSyscallNoError(SB),NOSPLIT,$0-48
MOVD a1+8(FP), R2
MOVD a2+16(FP), R3
MOVD a3+24(FP), R4
MOVD $0, R5
MOVD $0, R6
MOVD $0, R7
MOVD trap+0(FP), R1 // syscall entry
SYSCALL
MOVD R2, r1+32(FP)
MOVD R3, r2+40(FP)
RET

30
vendor/golang.org/x/sys/unix/asm_openbsd_mips64.s generated vendored Normal file
View file

@ -0,0 +1,30 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build gc
// +build gc
#include "textflag.h"
//
// System call support for mips64, OpenBSD
//
// Just jump to package syscall's implementation for all these functions.
// The runtime may know about them.
TEXT ·Syscall(SB),NOSPLIT,$0-56
JMP syscall·Syscall(SB)
TEXT ·Syscall6(SB),NOSPLIT,$0-80
JMP syscall·Syscall6(SB)
TEXT ·Syscall9(SB),NOSPLIT,$0-104
JMP syscall·Syscall9(SB)
TEXT ·RawSyscall(SB),NOSPLIT,$0-56
JMP syscall·RawSyscall(SB)
TEXT ·RawSyscall6(SB),NOSPLIT,$0-80
JMP syscall·RawSyscall6(SB)

18
vendor/golang.org/x/sys/unix/asm_solaris_amd64.s generated vendored Normal file
View file

@ -0,0 +1,18 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build gc
// +build gc
#include "textflag.h"
//
// System calls for amd64, Solaris are implemented in runtime/syscall_solaris.go
//
TEXT ·sysvicall6(SB),NOSPLIT,$0-88
JMP syscall·sysvicall6(SB)
TEXT ·rawSysvicall6(SB),NOSPLIT,$0-88
JMP syscall·rawSysvicall6(SB)

426
vendor/golang.org/x/sys/unix/asm_zos_s390x.s generated vendored Normal file
View file

@ -0,0 +1,426 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build zos && s390x && gc
// +build zos
// +build s390x
// +build gc
#include "textflag.h"
#define PSALAA 1208(R0)
#define GTAB64(x) 80(x)
#define LCA64(x) 88(x)
#define CAA(x) 8(x)
#define EDCHPXV(x) 1016(x) // in the CAA
#define SAVSTACK_ASYNC(x) 336(x) // in the LCA
// SS_*, where x=SAVSTACK_ASYNC
#define SS_LE(x) 0(x)
#define SS_GO(x) 8(x)
#define SS_ERRNO(x) 16(x)
#define SS_ERRNOJR(x) 20(x)
#define LE_CALL BYTE $0x0D; BYTE $0x76; // BL R7, R6
TEXT ·clearErrno(SB),NOSPLIT,$0-0
BL addrerrno<>(SB)
MOVD $0, 0(R3)
RET
// Returns the address of errno in R3.
TEXT addrerrno<>(SB),NOSPLIT|NOFRAME,$0-0
// Get library control area (LCA).
MOVW PSALAA, R8
MOVD LCA64(R8), R8
// Get __errno FuncDesc.
MOVD CAA(R8), R9
MOVD EDCHPXV(R9), R9
ADD $(0x156*16), R9
LMG 0(R9), R5, R6
// Switch to saved LE stack.
MOVD SAVSTACK_ASYNC(R8), R9
MOVD 0(R9), R4
MOVD $0, 0(R9)
// Call __errno function.
LE_CALL
NOPH
// Switch back to Go stack.
XOR R0, R0 // Restore R0 to $0.
MOVD R4, 0(R9) // Save stack pointer.
RET
TEXT ·syscall_syscall(SB),NOSPLIT,$0-56
BL runtime·entersyscall(SB)
MOVD a1+8(FP), R1
MOVD a2+16(FP), R2
MOVD a3+24(FP), R3
// Get library control area (LCA).
MOVW PSALAA, R8
MOVD LCA64(R8), R8
// Get function.
MOVD CAA(R8), R9
MOVD EDCHPXV(R9), R9
MOVD trap+0(FP), R5
SLD $4, R5
ADD R5, R9
LMG 0(R9), R5, R6
// Restore LE stack.
MOVD SAVSTACK_ASYNC(R8), R9
MOVD 0(R9), R4
MOVD $0, 0(R9)
// Call function.
LE_CALL
NOPH
XOR R0, R0 // Restore R0 to $0.
MOVD R4, 0(R9) // Save stack pointer.
MOVD R3, r1+32(FP)
MOVD R0, r2+40(FP)
MOVD R0, err+48(FP)
MOVW R3, R4
CMP R4, $-1
BNE done
BL addrerrno<>(SB)
MOVWZ 0(R3), R3
MOVD R3, err+48(FP)
done:
BL runtime·exitsyscall(SB)
RET
TEXT ·syscall_rawsyscall(SB),NOSPLIT,$0-56
MOVD a1+8(FP), R1
MOVD a2+16(FP), R2
MOVD a3+24(FP), R3
// Get library control area (LCA).
MOVW PSALAA, R8
MOVD LCA64(R8), R8
// Get function.
MOVD CAA(R8), R9
MOVD EDCHPXV(R9), R9
MOVD trap+0(FP), R5
SLD $4, R5
ADD R5, R9
LMG 0(R9), R5, R6
// Restore LE stack.
MOVD SAVSTACK_ASYNC(R8), R9
MOVD 0(R9), R4
MOVD $0, 0(R9)
// Call function.
LE_CALL
NOPH
XOR R0, R0 // Restore R0 to $0.
MOVD R4, 0(R9) // Save stack pointer.
MOVD R3, r1+32(FP)
MOVD R0, r2+40(FP)
MOVD R0, err+48(FP)
MOVW R3, R4
CMP R4, $-1
BNE done
BL addrerrno<>(SB)
MOVWZ 0(R3), R3
MOVD R3, err+48(FP)
done:
RET
TEXT ·syscall_syscall6(SB),NOSPLIT,$0-80
BL runtime·entersyscall(SB)
MOVD a1+8(FP), R1
MOVD a2+16(FP), R2
MOVD a3+24(FP), R3
// Get library control area (LCA).
MOVW PSALAA, R8
MOVD LCA64(R8), R8
// Get function.
MOVD CAA(R8), R9
MOVD EDCHPXV(R9), R9
MOVD trap+0(FP), R5
SLD $4, R5
ADD R5, R9
LMG 0(R9), R5, R6
// Restore LE stack.
MOVD SAVSTACK_ASYNC(R8), R9
MOVD 0(R9), R4
MOVD $0, 0(R9)
// Fill in parameter list.
MOVD a4+32(FP), R12
MOVD R12, (2176+24)(R4)
MOVD a5+40(FP), R12
MOVD R12, (2176+32)(R4)
MOVD a6+48(FP), R12
MOVD R12, (2176+40)(R4)
// Call function.
LE_CALL
NOPH
XOR R0, R0 // Restore R0 to $0.
MOVD R4, 0(R9) // Save stack pointer.
MOVD R3, r1+56(FP)
MOVD R0, r2+64(FP)
MOVD R0, err+72(FP)
MOVW R3, R4
CMP R4, $-1
BNE done
BL addrerrno<>(SB)
MOVWZ 0(R3), R3
MOVD R3, err+72(FP)
done:
BL runtime·exitsyscall(SB)
RET
TEXT ·syscall_rawsyscall6(SB),NOSPLIT,$0-80
MOVD a1+8(FP), R1
MOVD a2+16(FP), R2
MOVD a3+24(FP), R3
// Get library control area (LCA).
MOVW PSALAA, R8
MOVD LCA64(R8), R8
// Get function.
MOVD CAA(R8), R9
MOVD EDCHPXV(R9), R9
MOVD trap+0(FP), R5
SLD $4, R5
ADD R5, R9
LMG 0(R9), R5, R6
// Restore LE stack.
MOVD SAVSTACK_ASYNC(R8), R9
MOVD 0(R9), R4
MOVD $0, 0(R9)
// Fill in parameter list.
MOVD a4+32(FP), R12
MOVD R12, (2176+24)(R4)
MOVD a5+40(FP), R12
MOVD R12, (2176+32)(R4)
MOVD a6+48(FP), R12
MOVD R12, (2176+40)(R4)
// Call function.
LE_CALL
NOPH
XOR R0, R0 // Restore R0 to $0.
MOVD R4, 0(R9) // Save stack pointer.
MOVD R3, r1+56(FP)
MOVD R0, r2+64(FP)
MOVD R0, err+72(FP)
MOVW R3, R4
CMP R4, $-1
BNE done
BL ·rrno<>(SB)
MOVWZ 0(R3), R3
MOVD R3, err+72(FP)
done:
RET
TEXT ·syscall_syscall9(SB),NOSPLIT,$0
BL runtime·entersyscall(SB)
MOVD a1+8(FP), R1
MOVD a2+16(FP), R2
MOVD a3+24(FP), R3
// Get library control area (LCA).
MOVW PSALAA, R8
MOVD LCA64(R8), R8
// Get function.
MOVD CAA(R8), R9
MOVD EDCHPXV(R9), R9
MOVD trap+0(FP), R5
SLD $4, R5
ADD R5, R9
LMG 0(R9), R5, R6
// Restore LE stack.
MOVD SAVSTACK_ASYNC(R8), R9
MOVD 0(R9), R4
MOVD $0, 0(R9)
// Fill in parameter list.
MOVD a4+32(FP), R12
MOVD R12, (2176+24)(R4)
MOVD a5+40(FP), R12
MOVD R12, (2176+32)(R4)
MOVD a6+48(FP), R12
MOVD R12, (2176+40)(R4)
MOVD a7+56(FP), R12
MOVD R12, (2176+48)(R4)
MOVD a8+64(FP), R12
MOVD R12, (2176+56)(R4)
MOVD a9+72(FP), R12
MOVD R12, (2176+64)(R4)
// Call function.
LE_CALL
NOPH
XOR R0, R0 // Restore R0 to $0.
MOVD R4, 0(R9) // Save stack pointer.
MOVD R3, r1+80(FP)
MOVD R0, r2+88(FP)
MOVD R0, err+96(FP)
MOVW R3, R4
CMP R4, $-1
BNE done
BL addrerrno<>(SB)
MOVWZ 0(R3), R3
MOVD R3, err+96(FP)
done:
BL runtime·exitsyscall(SB)
RET
TEXT ·syscall_rawsyscall9(SB),NOSPLIT,$0
MOVD a1+8(FP), R1
MOVD a2+16(FP), R2
MOVD a3+24(FP), R3
// Get library control area (LCA).
MOVW PSALAA, R8
MOVD LCA64(R8), R8
// Get function.
MOVD CAA(R8), R9
MOVD EDCHPXV(R9), R9
MOVD trap+0(FP), R5
SLD $4, R5
ADD R5, R9
LMG 0(R9), R5, R6
// Restore LE stack.
MOVD SAVSTACK_ASYNC(R8), R9
MOVD 0(R9), R4
MOVD $0, 0(R9)
// Fill in parameter list.
MOVD a4+32(FP), R12
MOVD R12, (2176+24)(R4)
MOVD a5+40(FP), R12
MOVD R12, (2176+32)(R4)
MOVD a6+48(FP), R12
MOVD R12, (2176+40)(R4)
MOVD a7+56(FP), R12
MOVD R12, (2176+48)(R4)
MOVD a8+64(FP), R12
MOVD R12, (2176+56)(R4)
MOVD a9+72(FP), R12
MOVD R12, (2176+64)(R4)
// Call function.
LE_CALL
NOPH
XOR R0, R0 // Restore R0 to $0.
MOVD R4, 0(R9) // Save stack pointer.
MOVD R3, r1+80(FP)
MOVD R0, r2+88(FP)
MOVD R0, err+96(FP)
MOVW R3, R4
CMP R4, $-1
BNE done
BL addrerrno<>(SB)
MOVWZ 0(R3), R3
MOVD R3, err+96(FP)
done:
RET
// func svcCall(fnptr unsafe.Pointer, argv *unsafe.Pointer, dsa *uint64)
TEXT ·svcCall(SB),NOSPLIT,$0
BL runtime·save_g(SB) // Save g and stack pointer
MOVW PSALAA, R8
MOVD LCA64(R8), R8
MOVD SAVSTACK_ASYNC(R8), R9
MOVD R15, 0(R9)
MOVD argv+8(FP), R1 // Move function arguments into registers
MOVD dsa+16(FP), g
MOVD fnptr+0(FP), R15
BYTE $0x0D // Branch to function
BYTE $0xEF
BL runtime·load_g(SB) // Restore g and stack pointer
MOVW PSALAA, R8
MOVD LCA64(R8), R8
MOVD SAVSTACK_ASYNC(R8), R9
MOVD 0(R9), R15
RET
// func svcLoad(name *byte) unsafe.Pointer
TEXT ·svcLoad(SB),NOSPLIT,$0
MOVD R15, R2 // Save go stack pointer
MOVD name+0(FP), R0 // Move SVC args into registers
MOVD $0x80000000, R1
MOVD $0, R15
BYTE $0x0A // SVC 08 LOAD
BYTE $0x08
MOVW R15, R3 // Save return code from SVC
MOVD R2, R15 // Restore go stack pointer
CMP R3, $0 // Check SVC return code
BNE error
MOVD $-2, R3 // Reset last bit of entry point to zero
AND R0, R3
MOVD R3, addr+8(FP) // Return entry point returned by SVC
CMP R0, R3 // Check if last bit of entry point was set
BNE done
MOVD R15, R2 // Save go stack pointer
MOVD $0, R15 // Move SVC args into registers (entry point still in r0 from SVC 08)
BYTE $0x0A // SVC 09 DELETE
BYTE $0x09
MOVD R2, R15 // Restore go stack pointer
error:
MOVD $0, addr+8(FP) // Return 0 on failure
done:
XOR R0, R0 // Reset r0 to 0
RET
// func svcUnload(name *byte, fnptr unsafe.Pointer) int64
TEXT ·svcUnload(SB),NOSPLIT,$0
MOVD R15, R2 // Save go stack pointer
MOVD name+0(FP), R0 // Move SVC args into registers
MOVD addr+8(FP), R15
BYTE $0x0A // SVC 09
BYTE $0x09
XOR R0, R0 // Reset r0 to 0
MOVD R15, R1 // Save SVC return code
MOVD R2, R15 // Restore go stack pointer
MOVD R1, rc+0(FP) // Return SVC return code
RET
// func gettid() uint64
TEXT ·gettid(SB), NOSPLIT, $0
// Get library control area (LCA).
MOVW PSALAA, R8
MOVD LCA64(R8), R8
// Get CEECAATHDID
MOVD CAA(R8), R9
MOVD 0x3D0(R9), R9
MOVD R9, ret+0(FP)
RET

36
vendor/golang.org/x/sys/unix/bluetooth_linux.go generated vendored Normal file
View file

@ -0,0 +1,36 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Bluetooth sockets and messages
package unix
// Bluetooth Protocols
const (
BTPROTO_L2CAP = 0
BTPROTO_HCI = 1
BTPROTO_SCO = 2
BTPROTO_RFCOMM = 3
BTPROTO_BNEP = 4
BTPROTO_CMTP = 5
BTPROTO_HIDP = 6
BTPROTO_AVDTP = 7
)
const (
HCI_CHANNEL_RAW = 0
HCI_CHANNEL_USER = 1
HCI_CHANNEL_MONITOR = 2
HCI_CHANNEL_CONTROL = 3
HCI_CHANNEL_LOGGING = 4
)
// Socketoption Level
const (
SOL_BLUETOOTH = 0x112
SOL_HCI = 0x0
SOL_L2CAP = 0x6
SOL_RFCOMM = 0x12
SOL_SCO = 0x11
)

196
vendor/golang.org/x/sys/unix/cap_freebsd.go generated vendored Normal file
View file

@ -0,0 +1,196 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build freebsd
// +build freebsd
package unix
import (
"errors"
"fmt"
)
// Go implementation of C mostly found in /usr/src/sys/kern/subr_capability.c
const (
// This is the version of CapRights this package understands. See C implementation for parallels.
capRightsGoVersion = CAP_RIGHTS_VERSION_00
capArSizeMin = CAP_RIGHTS_VERSION_00 + 2
capArSizeMax = capRightsGoVersion + 2
)
var (
bit2idx = []int{
-1, 0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1,
4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
}
)
func capidxbit(right uint64) int {
return int((right >> 57) & 0x1f)
}
func rightToIndex(right uint64) (int, error) {
idx := capidxbit(right)
if idx < 0 || idx >= len(bit2idx) {
return -2, fmt.Errorf("index for right 0x%x out of range", right)
}
return bit2idx[idx], nil
}
func caprver(right uint64) int {
return int(right >> 62)
}
func capver(rights *CapRights) int {
return caprver(rights.Rights[0])
}
func caparsize(rights *CapRights) int {
return capver(rights) + 2
}
// CapRightsSet sets the permissions in setrights in rights.
func CapRightsSet(rights *CapRights, setrights []uint64) error {
// This is essentially a copy of cap_rights_vset()
if capver(rights) != CAP_RIGHTS_VERSION_00 {
return fmt.Errorf("bad rights version %d", capver(rights))
}
n := caparsize(rights)
if n < capArSizeMin || n > capArSizeMax {
return errors.New("bad rights size")
}
for _, right := range setrights {
if caprver(right) != CAP_RIGHTS_VERSION_00 {
return errors.New("bad right version")
}
i, err := rightToIndex(right)
if err != nil {
return err
}
if i >= n {
return errors.New("index overflow")
}
if capidxbit(rights.Rights[i]) != capidxbit(right) {
return errors.New("index mismatch")
}
rights.Rights[i] |= right
if capidxbit(rights.Rights[i]) != capidxbit(right) {
return errors.New("index mismatch (after assign)")
}
}
return nil
}
// CapRightsClear clears the permissions in clearrights from rights.
func CapRightsClear(rights *CapRights, clearrights []uint64) error {
// This is essentially a copy of cap_rights_vclear()
if capver(rights) != CAP_RIGHTS_VERSION_00 {
return fmt.Errorf("bad rights version %d", capver(rights))
}
n := caparsize(rights)
if n < capArSizeMin || n > capArSizeMax {
return errors.New("bad rights size")
}
for _, right := range clearrights {
if caprver(right) != CAP_RIGHTS_VERSION_00 {
return errors.New("bad right version")
}
i, err := rightToIndex(right)
if err != nil {
return err
}
if i >= n {
return errors.New("index overflow")
}
if capidxbit(rights.Rights[i]) != capidxbit(right) {
return errors.New("index mismatch")
}
rights.Rights[i] &= ^(right & 0x01FFFFFFFFFFFFFF)
if capidxbit(rights.Rights[i]) != capidxbit(right) {
return errors.New("index mismatch (after assign)")
}
}
return nil
}
// CapRightsIsSet checks whether all the permissions in setrights are present in rights.
func CapRightsIsSet(rights *CapRights, setrights []uint64) (bool, error) {
// This is essentially a copy of cap_rights_is_vset()
if capver(rights) != CAP_RIGHTS_VERSION_00 {
return false, fmt.Errorf("bad rights version %d", capver(rights))
}
n := caparsize(rights)
if n < capArSizeMin || n > capArSizeMax {
return false, errors.New("bad rights size")
}
for _, right := range setrights {
if caprver(right) != CAP_RIGHTS_VERSION_00 {
return false, errors.New("bad right version")
}
i, err := rightToIndex(right)
if err != nil {
return false, err
}
if i >= n {
return false, errors.New("index overflow")
}
if capidxbit(rights.Rights[i]) != capidxbit(right) {
return false, errors.New("index mismatch")
}
if (rights.Rights[i] & right) != right {
return false, nil
}
}
return true, nil
}
func capright(idx uint64, bit uint64) uint64 {
return ((1 << (57 + idx)) | bit)
}
// CapRightsInit returns a pointer to an initialised CapRights structure filled with rights.
// See man cap_rights_init(3) and rights(4).
func CapRightsInit(rights []uint64) (*CapRights, error) {
var r CapRights
r.Rights[0] = (capRightsGoVersion << 62) | capright(0, 0)
r.Rights[1] = capright(1, 0)
err := CapRightsSet(&r, rights)
if err != nil {
return nil, err
}
return &r, nil
}
// CapRightsLimit reduces the operations permitted on fd to at most those contained in rights.
// The capability rights on fd can never be increased by CapRightsLimit.
// See man cap_rights_limit(2) and rights(4).
func CapRightsLimit(fd uintptr, rights *CapRights) error {
return capRightsLimit(int(fd), rights)
}
// CapRightsGet returns a CapRights structure containing the operations permitted on fd.
// See man cap_rights_get(3) and rights(4).
func CapRightsGet(fd uintptr) (*CapRights, error) {
r, err := CapRightsInit(nil)
if err != nil {
return nil, err
}
err = capRightsGet(capRightsGoVersion, int(fd), r)
if err != nil {
return nil, err
}
return r, nil
}

14
vendor/golang.org/x/sys/unix/constants.go generated vendored Normal file
View file

@ -0,0 +1,14 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build aix || darwin || dragonfly || freebsd || linux || netbsd || openbsd || solaris || zos
// +build aix darwin dragonfly freebsd linux netbsd openbsd solaris zos
package unix
const (
R_OK = 0x4
W_OK = 0x2
X_OK = 0x1
)

27
vendor/golang.org/x/sys/unix/dev_aix_ppc.go generated vendored Normal file
View file

@ -0,0 +1,27 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build aix && ppc
// +build aix,ppc
// Functions to access/create device major and minor numbers matching the
// encoding used by AIX.
package unix
// Major returns the major component of a Linux device number.
func Major(dev uint64) uint32 {
return uint32((dev >> 16) & 0xffff)
}
// Minor returns the minor component of a Linux device number.
func Minor(dev uint64) uint32 {
return uint32(dev & 0xffff)
}
// Mkdev returns a Linux device number generated from the given major and minor
// components.
func Mkdev(major, minor uint32) uint64 {
return uint64(((major) << 16) | (minor))
}

29
vendor/golang.org/x/sys/unix/dev_aix_ppc64.go generated vendored Normal file
View file

@ -0,0 +1,29 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build aix && ppc64
// +build aix,ppc64
// Functions to access/create device major and minor numbers matching the
// encoding used AIX.
package unix
// Major returns the major component of a Linux device number.
func Major(dev uint64) uint32 {
return uint32((dev & 0x3fffffff00000000) >> 32)
}
// Minor returns the minor component of a Linux device number.
func Minor(dev uint64) uint32 {
return uint32((dev & 0x00000000ffffffff) >> 0)
}
// Mkdev returns a Linux device number generated from the given major and minor
// components.
func Mkdev(major, minor uint32) uint64 {
var DEVNO64 uint64
DEVNO64 = 0x8000000000000000
return ((uint64(major) << 32) | (uint64(minor) & 0x00000000FFFFFFFF) | DEVNO64)
}

24
vendor/golang.org/x/sys/unix/dev_darwin.go generated vendored Normal file
View file

@ -0,0 +1,24 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Functions to access/create device major and minor numbers matching the
// encoding used in Darwin's sys/types.h header.
package unix
// Major returns the major component of a Darwin device number.
func Major(dev uint64) uint32 {
return uint32((dev >> 24) & 0xff)
}
// Minor returns the minor component of a Darwin device number.
func Minor(dev uint64) uint32 {
return uint32(dev & 0xffffff)
}
// Mkdev returns a Darwin device number generated from the given major and minor
// components.
func Mkdev(major, minor uint32) uint64 {
return (uint64(major) << 24) | uint64(minor)
}

30
vendor/golang.org/x/sys/unix/dev_dragonfly.go generated vendored Normal file
View file

@ -0,0 +1,30 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Functions to access/create device major and minor numbers matching the
// encoding used in Dragonfly's sys/types.h header.
//
// The information below is extracted and adapted from sys/types.h:
//
// Minor gives a cookie instead of an index since in order to avoid changing the
// meanings of bits 0-15 or wasting time and space shifting bits 16-31 for
// devices that don't use them.
package unix
// Major returns the major component of a DragonFlyBSD device number.
func Major(dev uint64) uint32 {
return uint32((dev >> 8) & 0xff)
}
// Minor returns the minor component of a DragonFlyBSD device number.
func Minor(dev uint64) uint32 {
return uint32(dev & 0xffff00ff)
}
// Mkdev returns a DragonFlyBSD device number generated from the given major and
// minor components.
func Mkdev(major, minor uint32) uint64 {
return (uint64(major) << 8) | uint64(minor)
}

30
vendor/golang.org/x/sys/unix/dev_freebsd.go generated vendored Normal file
View file

@ -0,0 +1,30 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Functions to access/create device major and minor numbers matching the
// encoding used in FreeBSD's sys/types.h header.
//
// The information below is extracted and adapted from sys/types.h:
//
// Minor gives a cookie instead of an index since in order to avoid changing the
// meanings of bits 0-15 or wasting time and space shifting bits 16-31 for
// devices that don't use them.
package unix
// Major returns the major component of a FreeBSD device number.
func Major(dev uint64) uint32 {
return uint32((dev >> 8) & 0xff)
}
// Minor returns the minor component of a FreeBSD device number.
func Minor(dev uint64) uint32 {
return uint32(dev & 0xffff00ff)
}
// Mkdev returns a FreeBSD device number generated from the given major and
// minor components.
func Mkdev(major, minor uint32) uint64 {
return (uint64(major) << 8) | uint64(minor)
}

42
vendor/golang.org/x/sys/unix/dev_linux.go generated vendored Normal file
View file

@ -0,0 +1,42 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Functions to access/create device major and minor numbers matching the
// encoding used by the Linux kernel and glibc.
//
// The information below is extracted and adapted from bits/sysmacros.h in the
// glibc sources:
//
// dev_t in glibc is 64-bit, with 32-bit major and minor numbers. glibc's
// default encoding is MMMM Mmmm mmmM MMmm, where M is a hex digit of the major
// number and m is a hex digit of the minor number. This is backward compatible
// with legacy systems where dev_t is 16 bits wide, encoded as MMmm. It is also
// backward compatible with the Linux kernel, which for some architectures uses
// 32-bit dev_t, encoded as mmmM MMmm.
package unix
// Major returns the major component of a Linux device number.
func Major(dev uint64) uint32 {
major := uint32((dev & 0x00000000000fff00) >> 8)
major |= uint32((dev & 0xfffff00000000000) >> 32)
return major
}
// Minor returns the minor component of a Linux device number.
func Minor(dev uint64) uint32 {
minor := uint32((dev & 0x00000000000000ff) >> 0)
minor |= uint32((dev & 0x00000ffffff00000) >> 12)
return minor
}
// Mkdev returns a Linux device number generated from the given major and minor
// components.
func Mkdev(major, minor uint32) uint64 {
dev := (uint64(major) & 0x00000fff) << 8
dev |= (uint64(major) & 0xfffff000) << 32
dev |= (uint64(minor) & 0x000000ff) << 0
dev |= (uint64(minor) & 0xffffff00) << 12
return dev
}

29
vendor/golang.org/x/sys/unix/dev_netbsd.go generated vendored Normal file
View file

@ -0,0 +1,29 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Functions to access/create device major and minor numbers matching the
// encoding used in NetBSD's sys/types.h header.
package unix
// Major returns the major component of a NetBSD device number.
func Major(dev uint64) uint32 {
return uint32((dev & 0x000fff00) >> 8)
}
// Minor returns the minor component of a NetBSD device number.
func Minor(dev uint64) uint32 {
minor := uint32((dev & 0x000000ff) >> 0)
minor |= uint32((dev & 0xfff00000) >> 12)
return minor
}
// Mkdev returns a NetBSD device number generated from the given major and minor
// components.
func Mkdev(major, minor uint32) uint64 {
dev := (uint64(major) << 8) & 0x000fff00
dev |= (uint64(minor) << 12) & 0xfff00000
dev |= (uint64(minor) << 0) & 0x000000ff
return dev
}

29
vendor/golang.org/x/sys/unix/dev_openbsd.go generated vendored Normal file
View file

@ -0,0 +1,29 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Functions to access/create device major and minor numbers matching the
// encoding used in OpenBSD's sys/types.h header.
package unix
// Major returns the major component of an OpenBSD device number.
func Major(dev uint64) uint32 {
return uint32((dev & 0x0000ff00) >> 8)
}
// Minor returns the minor component of an OpenBSD device number.
func Minor(dev uint64) uint32 {
minor := uint32((dev & 0x000000ff) >> 0)
minor |= uint32((dev & 0xffff0000) >> 8)
return minor
}
// Mkdev returns an OpenBSD device number generated from the given major and minor
// components.
func Mkdev(major, minor uint32) uint64 {
dev := (uint64(major) << 8) & 0x0000ff00
dev |= (uint64(minor) << 8) & 0xffff0000
dev |= (uint64(minor) << 0) & 0x000000ff
return dev
}

29
vendor/golang.org/x/sys/unix/dev_zos.go generated vendored Normal file
View file

@ -0,0 +1,29 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build zos && s390x
// +build zos,s390x
// Functions to access/create device major and minor numbers matching the
// encoding used by z/OS.
//
// The information below is extracted and adapted from <sys/stat.h> macros.
package unix
// Major returns the major component of a z/OS device number.
func Major(dev uint64) uint32 {
return uint32((dev >> 16) & 0x0000FFFF)
}
// Minor returns the minor component of a z/OS device number.
func Minor(dev uint64) uint32 {
return uint32(dev & 0x0000FFFF)
}
// Mkdev returns a z/OS device number generated from the given major and minor
// components.
func Mkdev(major, minor uint32) uint64 {
return (uint64(major) << 16) | uint64(minor)
}

103
vendor/golang.org/x/sys/unix/dirent.go generated vendored Normal file
View file

@ -0,0 +1,103 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build aix || darwin || dragonfly || freebsd || linux || netbsd || openbsd || solaris
// +build aix darwin dragonfly freebsd linux netbsd openbsd solaris
package unix
import "unsafe"
// readInt returns the size-bytes unsigned integer in native byte order at offset off.
func readInt(b []byte, off, size uintptr) (u uint64, ok bool) {
if len(b) < int(off+size) {
return 0, false
}
if isBigEndian {
return readIntBE(b[off:], size), true
}
return readIntLE(b[off:], size), true
}
func readIntBE(b []byte, size uintptr) uint64 {
switch size {
case 1:
return uint64(b[0])
case 2:
_ = b[1] // bounds check hint to compiler; see golang.org/issue/14808
return uint64(b[1]) | uint64(b[0])<<8
case 4:
_ = b[3] // bounds check hint to compiler; see golang.org/issue/14808
return uint64(b[3]) | uint64(b[2])<<8 | uint64(b[1])<<16 | uint64(b[0])<<24
case 8:
_ = b[7] // bounds check hint to compiler; see golang.org/issue/14808
return uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 |
uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56
default:
panic("syscall: readInt with unsupported size")
}
}
func readIntLE(b []byte, size uintptr) uint64 {
switch size {
case 1:
return uint64(b[0])
case 2:
_ = b[1] // bounds check hint to compiler; see golang.org/issue/14808
return uint64(b[0]) | uint64(b[1])<<8
case 4:
_ = b[3] // bounds check hint to compiler; see golang.org/issue/14808
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24
case 8:
_ = b[7] // bounds check hint to compiler; see golang.org/issue/14808
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
default:
panic("syscall: readInt with unsupported size")
}
}
// ParseDirent parses up to max directory entries in buf,
// appending the names to names. It returns the number of
// bytes consumed from buf, the number of entries added
// to names, and the new names slice.
func ParseDirent(buf []byte, max int, names []string) (consumed int, count int, newnames []string) {
origlen := len(buf)
count = 0
for max != 0 && len(buf) > 0 {
reclen, ok := direntReclen(buf)
if !ok || reclen > uint64(len(buf)) {
return origlen, count, names
}
rec := buf[:reclen]
buf = buf[reclen:]
ino, ok := direntIno(rec)
if !ok {
break
}
if ino == 0 { // File absent in directory.
continue
}
const namoff = uint64(unsafe.Offsetof(Dirent{}.Name))
namlen, ok := direntNamlen(rec)
if !ok || namoff+namlen > uint64(len(rec)) {
break
}
name := rec[namoff : namoff+namlen]
for i, c := range name {
if c == 0 {
name = name[:i]
break
}
}
// Check for useless names before allocating a string.
if string(name) == "." || string(name) == ".." {
continue
}
max--
count++
names = append(names, string(name))
}
return origlen - len(buf), count, names
}

10
vendor/golang.org/x/sys/unix/endian_big.go generated vendored Normal file
View file

@ -0,0 +1,10 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
//go:build armbe || arm64be || m68k || mips || mips64 || mips64p32 || ppc || ppc64 || s390 || s390x || shbe || sparc || sparc64
// +build armbe arm64be m68k mips mips64 mips64p32 ppc ppc64 s390 s390x shbe sparc sparc64
package unix
const isBigEndian = true

10
vendor/golang.org/x/sys/unix/endian_little.go generated vendored Normal file
View file

@ -0,0 +1,10 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
//go:build 386 || amd64 || amd64p32 || alpha || arm || arm64 || loong64 || mipsle || mips64le || mips64p32le || nios2 || ppc64le || riscv || riscv64 || sh
// +build 386 amd64 amd64p32 alpha arm arm64 loong64 mipsle mips64le mips64p32le nios2 ppc64le riscv riscv64 sh
package unix
const isBigEndian = false

32
vendor/golang.org/x/sys/unix/env_unix.go generated vendored Normal file
View file

@ -0,0 +1,32 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build aix || darwin || dragonfly || freebsd || linux || netbsd || openbsd || solaris || zos
// +build aix darwin dragonfly freebsd linux netbsd openbsd solaris zos
// Unix environment variables.
package unix
import "syscall"
func Getenv(key string) (value string, found bool) {
return syscall.Getenv(key)
}
func Setenv(key, value string) error {
return syscall.Setenv(key, value)
}
func Clearenv() {
syscall.Clearenv()
}
func Environ() []string {
return syscall.Environ()
}
func Unsetenv(key string) error {
return syscall.Unsetenv(key)
}

221
vendor/golang.org/x/sys/unix/epoll_zos.go generated vendored Normal file
View file

@ -0,0 +1,221 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build zos && s390x
// +build zos,s390x
package unix
import (
"sync"
)
// This file simulates epoll on z/OS using poll.
// Analogous to epoll_event on Linux.
// TODO(neeilan): Pad is because the Linux kernel expects a 96-bit struct. We never pass this to the kernel; remove?
type EpollEvent struct {
Events uint32
Fd int32
Pad int32
}
const (
EPOLLERR = 0x8
EPOLLHUP = 0x10
EPOLLIN = 0x1
EPOLLMSG = 0x400
EPOLLOUT = 0x4
EPOLLPRI = 0x2
EPOLLRDBAND = 0x80
EPOLLRDNORM = 0x40
EPOLLWRBAND = 0x200
EPOLLWRNORM = 0x100
EPOLL_CTL_ADD = 0x1
EPOLL_CTL_DEL = 0x2
EPOLL_CTL_MOD = 0x3
// The following constants are part of the epoll API, but represent
// currently unsupported functionality on z/OS.
// EPOLL_CLOEXEC = 0x80000
// EPOLLET = 0x80000000
// EPOLLONESHOT = 0x40000000
// EPOLLRDHUP = 0x2000 // Typically used with edge-triggered notis
// EPOLLEXCLUSIVE = 0x10000000 // Exclusive wake-up mode
// EPOLLWAKEUP = 0x20000000 // Relies on Linux's BLOCK_SUSPEND capability
)
// TODO(neeilan): We can eliminate these epToPoll / pToEpoll calls by using identical mask values for POLL/EPOLL
// constants where possible The lower 16 bits of epoll events (uint32) can fit any system poll event (int16).
// epToPollEvt converts epoll event field to poll equivalent.
// In epoll, Events is a 32-bit field, while poll uses 16 bits.
func epToPollEvt(events uint32) int16 {
var ep2p = map[uint32]int16{
EPOLLIN: POLLIN,
EPOLLOUT: POLLOUT,
EPOLLHUP: POLLHUP,
EPOLLPRI: POLLPRI,
EPOLLERR: POLLERR,
}
var pollEvts int16 = 0
for epEvt, pEvt := range ep2p {
if (events & epEvt) != 0 {
pollEvts |= pEvt
}
}
return pollEvts
}
// pToEpollEvt converts 16 bit poll event bitfields to 32-bit epoll event fields.
func pToEpollEvt(revents int16) uint32 {
var p2ep = map[int16]uint32{
POLLIN: EPOLLIN,
POLLOUT: EPOLLOUT,
POLLHUP: EPOLLHUP,
POLLPRI: EPOLLPRI,
POLLERR: EPOLLERR,
}
var epollEvts uint32 = 0
for pEvt, epEvt := range p2ep {
if (revents & pEvt) != 0 {
epollEvts |= epEvt
}
}
return epollEvts
}
// Per-process epoll implementation.
type epollImpl struct {
mu sync.Mutex
epfd2ep map[int]*eventPoll
nextEpfd int
}
// eventPoll holds a set of file descriptors being watched by the process. A process can have multiple epoll instances.
// On Linux, this is an in-kernel data structure accessed through a fd.
type eventPoll struct {
mu sync.Mutex
fds map[int]*EpollEvent
}
// epoll impl for this process.
var impl epollImpl = epollImpl{
epfd2ep: make(map[int]*eventPoll),
nextEpfd: 0,
}
func (e *epollImpl) epollcreate(size int) (epfd int, err error) {
e.mu.Lock()
defer e.mu.Unlock()
epfd = e.nextEpfd
e.nextEpfd++
e.epfd2ep[epfd] = &eventPoll{
fds: make(map[int]*EpollEvent),
}
return epfd, nil
}
func (e *epollImpl) epollcreate1(flag int) (fd int, err error) {
return e.epollcreate(4)
}
func (e *epollImpl) epollctl(epfd int, op int, fd int, event *EpollEvent) (err error) {
e.mu.Lock()
defer e.mu.Unlock()
ep, ok := e.epfd2ep[epfd]
if !ok {
return EBADF
}
switch op {
case EPOLL_CTL_ADD:
// TODO(neeilan): When we make epfds and fds disjoint, detect epoll
// loops here (instances watching each other) and return ELOOP.
if _, ok := ep.fds[fd]; ok {
return EEXIST
}
ep.fds[fd] = event
case EPOLL_CTL_MOD:
if _, ok := ep.fds[fd]; !ok {
return ENOENT
}
ep.fds[fd] = event
case EPOLL_CTL_DEL:
if _, ok := ep.fds[fd]; !ok {
return ENOENT
}
delete(ep.fds, fd)
}
return nil
}
// Must be called while holding ep.mu
func (ep *eventPoll) getFds() []int {
fds := make([]int, len(ep.fds))
for fd := range ep.fds {
fds = append(fds, fd)
}
return fds
}
func (e *epollImpl) epollwait(epfd int, events []EpollEvent, msec int) (n int, err error) {
e.mu.Lock() // in [rare] case of concurrent epollcreate + epollwait
ep, ok := e.epfd2ep[epfd]
if !ok {
e.mu.Unlock()
return 0, EBADF
}
pollfds := make([]PollFd, 4)
for fd, epollevt := range ep.fds {
pollfds = append(pollfds, PollFd{Fd: int32(fd), Events: epToPollEvt(epollevt.Events)})
}
e.mu.Unlock()
n, err = Poll(pollfds, msec)
if err != nil {
return n, err
}
i := 0
for _, pFd := range pollfds {
if pFd.Revents != 0 {
events[i] = EpollEvent{Fd: pFd.Fd, Events: pToEpollEvt(pFd.Revents)}
i++
}
if i == n {
break
}
}
return n, nil
}
func EpollCreate(size int) (fd int, err error) {
return impl.epollcreate(size)
}
func EpollCreate1(flag int) (fd int, err error) {
return impl.epollcreate1(flag)
}
func EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error) {
return impl.epollctl(epfd, op, fd, event)
}
// Because EpollWait mutates events, the caller is expected to coordinate
// concurrent access if calling with the same epfd from multiple goroutines.
func EpollWait(epfd int, events []EpollEvent, msec int) (n int, err error) {
return impl.epollwait(epfd, events, msec)
}

37
vendor/golang.org/x/sys/unix/fcntl.go generated vendored Normal file
View file

@ -0,0 +1,37 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build dragonfly || freebsd || linux || netbsd || openbsd
// +build dragonfly freebsd linux netbsd openbsd
package unix
import "unsafe"
// fcntl64Syscall is usually SYS_FCNTL, but is overridden on 32-bit Linux
// systems by fcntl_linux_32bit.go to be SYS_FCNTL64.
var fcntl64Syscall uintptr = SYS_FCNTL
func fcntl(fd int, cmd, arg int) (int, error) {
valptr, _, errno := Syscall(fcntl64Syscall, uintptr(fd), uintptr(cmd), uintptr(arg))
var err error
if errno != 0 {
err = errno
}
return int(valptr), err
}
// FcntlInt performs a fcntl syscall on fd with the provided command and argument.
func FcntlInt(fd uintptr, cmd, arg int) (int, error) {
return fcntl(int(fd), cmd, arg)
}
// FcntlFlock performs a fcntl syscall for the F_GETLK, F_SETLK or F_SETLKW command.
func FcntlFlock(fd uintptr, cmd int, lk *Flock_t) error {
_, _, errno := Syscall(fcntl64Syscall, fd, uintptr(cmd), uintptr(unsafe.Pointer(lk)))
if errno == 0 {
return nil
}
return errno
}

24
vendor/golang.org/x/sys/unix/fcntl_darwin.go generated vendored Normal file
View file

@ -0,0 +1,24 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package unix
import "unsafe"
// FcntlInt performs a fcntl syscall on fd with the provided command and argument.
func FcntlInt(fd uintptr, cmd, arg int) (int, error) {
return fcntl(int(fd), cmd, arg)
}
// FcntlFlock performs a fcntl syscall for the F_GETLK, F_SETLK or F_SETLKW command.
func FcntlFlock(fd uintptr, cmd int, lk *Flock_t) error {
_, err := fcntl(int(fd), cmd, int(uintptr(unsafe.Pointer(lk))))
return err
}
// FcntlFstore performs a fcntl syscall for the F_PREALLOCATE command.
func FcntlFstore(fd uintptr, cmd int, fstore *Fstore_t) error {
_, err := fcntl(int(fd), cmd, int(uintptr(unsafe.Pointer(fstore))))
return err
}

14
vendor/golang.org/x/sys/unix/fcntl_linux_32bit.go generated vendored Normal file
View file

@ -0,0 +1,14 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build (linux && 386) || (linux && arm) || (linux && mips) || (linux && mipsle) || (linux && ppc)
// +build linux,386 linux,arm linux,mips linux,mipsle linux,ppc
package unix
func init() {
// On 32-bit Linux systems, the fcntl syscall that matches Go's
// Flock_t type is SYS_FCNTL64, not SYS_FCNTL.
fcntl64Syscall = SYS_FCNTL64
}

30
vendor/golang.org/x/sys/unix/fdset.go generated vendored Normal file
View file

@ -0,0 +1,30 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build aix || darwin || dragonfly || freebsd || linux || netbsd || openbsd || solaris || zos
// +build aix darwin dragonfly freebsd linux netbsd openbsd solaris zos
package unix
// Set adds fd to the set fds.
func (fds *FdSet) Set(fd int) {
fds.Bits[fd/NFDBITS] |= (1 << (uintptr(fd) % NFDBITS))
}
// Clear removes fd from the set fds.
func (fds *FdSet) Clear(fd int) {
fds.Bits[fd/NFDBITS] &^= (1 << (uintptr(fd) % NFDBITS))
}
// IsSet returns whether fd is in the set fds.
func (fds *FdSet) IsSet(fd int) bool {
return fds.Bits[fd/NFDBITS]&(1<<(uintptr(fd)%NFDBITS)) != 0
}
// Zero clears the set fds.
func (fds *FdSet) Zero() {
for i := range fds.Bits {
fds.Bits[i] = 0
}
}

164
vendor/golang.org/x/sys/unix/fstatfs_zos.go generated vendored Normal file
View file

@ -0,0 +1,164 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build zos && s390x
// +build zos,s390x
package unix
import (
"unsafe"
)
// This file simulates fstatfs on z/OS using fstatvfs and w_getmntent.
func Fstatfs(fd int, stat *Statfs_t) (err error) {
var stat_v Statvfs_t
err = Fstatvfs(fd, &stat_v)
if err == nil {
// populate stat
stat.Type = 0
stat.Bsize = stat_v.Bsize
stat.Blocks = stat_v.Blocks
stat.Bfree = stat_v.Bfree
stat.Bavail = stat_v.Bavail
stat.Files = stat_v.Files
stat.Ffree = stat_v.Ffree
stat.Fsid = stat_v.Fsid
stat.Namelen = stat_v.Namemax
stat.Frsize = stat_v.Frsize
stat.Flags = stat_v.Flag
for passn := 0; passn < 5; passn++ {
switch passn {
case 0:
err = tryGetmntent64(stat)
break
case 1:
err = tryGetmntent128(stat)
break
case 2:
err = tryGetmntent256(stat)
break
case 3:
err = tryGetmntent512(stat)
break
case 4:
err = tryGetmntent1024(stat)
break
default:
break
}
//proceed to return if: err is nil (found), err is nonnil but not ERANGE (another error occurred)
if err == nil || err != nil && err != ERANGE {
break
}
}
}
return err
}
func tryGetmntent64(stat *Statfs_t) (err error) {
var mnt_ent_buffer struct {
header W_Mnth
filesys_info [64]W_Mntent
}
var buffer_size int = int(unsafe.Sizeof(mnt_ent_buffer))
fs_count, err := W_Getmntent((*byte)(unsafe.Pointer(&mnt_ent_buffer)), buffer_size)
if err != nil {
return err
}
err = ERANGE //return ERANGE if no match is found in this batch
for i := 0; i < fs_count; i++ {
if stat.Fsid == uint64(mnt_ent_buffer.filesys_info[i].Dev) {
stat.Type = uint32(mnt_ent_buffer.filesys_info[i].Fstname[0])
err = nil
break
}
}
return err
}
func tryGetmntent128(stat *Statfs_t) (err error) {
var mnt_ent_buffer struct {
header W_Mnth
filesys_info [128]W_Mntent
}
var buffer_size int = int(unsafe.Sizeof(mnt_ent_buffer))
fs_count, err := W_Getmntent((*byte)(unsafe.Pointer(&mnt_ent_buffer)), buffer_size)
if err != nil {
return err
}
err = ERANGE //return ERANGE if no match is found in this batch
for i := 0; i < fs_count; i++ {
if stat.Fsid == uint64(mnt_ent_buffer.filesys_info[i].Dev) {
stat.Type = uint32(mnt_ent_buffer.filesys_info[i].Fstname[0])
err = nil
break
}
}
return err
}
func tryGetmntent256(stat *Statfs_t) (err error) {
var mnt_ent_buffer struct {
header W_Mnth
filesys_info [256]W_Mntent
}
var buffer_size int = int(unsafe.Sizeof(mnt_ent_buffer))
fs_count, err := W_Getmntent((*byte)(unsafe.Pointer(&mnt_ent_buffer)), buffer_size)
if err != nil {
return err
}
err = ERANGE //return ERANGE if no match is found in this batch
for i := 0; i < fs_count; i++ {
if stat.Fsid == uint64(mnt_ent_buffer.filesys_info[i].Dev) {
stat.Type = uint32(mnt_ent_buffer.filesys_info[i].Fstname[0])
err = nil
break
}
}
return err
}
func tryGetmntent512(stat *Statfs_t) (err error) {
var mnt_ent_buffer struct {
header W_Mnth
filesys_info [512]W_Mntent
}
var buffer_size int = int(unsafe.Sizeof(mnt_ent_buffer))
fs_count, err := W_Getmntent((*byte)(unsafe.Pointer(&mnt_ent_buffer)), buffer_size)
if err != nil {
return err
}
err = ERANGE //return ERANGE if no match is found in this batch
for i := 0; i < fs_count; i++ {
if stat.Fsid == uint64(mnt_ent_buffer.filesys_info[i].Dev) {
stat.Type = uint32(mnt_ent_buffer.filesys_info[i].Fstname[0])
err = nil
break
}
}
return err
}
func tryGetmntent1024(stat *Statfs_t) (err error) {
var mnt_ent_buffer struct {
header W_Mnth
filesys_info [1024]W_Mntent
}
var buffer_size int = int(unsafe.Sizeof(mnt_ent_buffer))
fs_count, err := W_Getmntent((*byte)(unsafe.Pointer(&mnt_ent_buffer)), buffer_size)
if err != nil {
return err
}
err = ERANGE //return ERANGE if no match is found in this batch
for i := 0; i < fs_count; i++ {
if stat.Fsid == uint64(mnt_ent_buffer.filesys_info[i].Dev) {
stat.Type = uint32(mnt_ent_buffer.filesys_info[i].Fstname[0])
err = nil
break
}
}
return err
}

60
vendor/golang.org/x/sys/unix/gccgo.go generated vendored Normal file
View file

@ -0,0 +1,60 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build gccgo && !aix
// +build gccgo,!aix
package unix
import "syscall"
// We can't use the gc-syntax .s files for gccgo. On the plus side
// much of the functionality can be written directly in Go.
func realSyscallNoError(trap, a1, a2, a3, a4, a5, a6, a7, a8, a9 uintptr) (r uintptr)
func realSyscall(trap, a1, a2, a3, a4, a5, a6, a7, a8, a9 uintptr) (r, errno uintptr)
func SyscallNoError(trap, a1, a2, a3 uintptr) (r1, r2 uintptr) {
syscall.Entersyscall()
r := realSyscallNoError(trap, a1, a2, a3, 0, 0, 0, 0, 0, 0)
syscall.Exitsyscall()
return r, 0
}
func Syscall(trap, a1, a2, a3 uintptr) (r1, r2 uintptr, err syscall.Errno) {
syscall.Entersyscall()
r, errno := realSyscall(trap, a1, a2, a3, 0, 0, 0, 0, 0, 0)
syscall.Exitsyscall()
return r, 0, syscall.Errno(errno)
}
func Syscall6(trap, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2 uintptr, err syscall.Errno) {
syscall.Entersyscall()
r, errno := realSyscall(trap, a1, a2, a3, a4, a5, a6, 0, 0, 0)
syscall.Exitsyscall()
return r, 0, syscall.Errno(errno)
}
func Syscall9(trap, a1, a2, a3, a4, a5, a6, a7, a8, a9 uintptr) (r1, r2 uintptr, err syscall.Errno) {
syscall.Entersyscall()
r, errno := realSyscall(trap, a1, a2, a3, a4, a5, a6, a7, a8, a9)
syscall.Exitsyscall()
return r, 0, syscall.Errno(errno)
}
func RawSyscallNoError(trap, a1, a2, a3 uintptr) (r1, r2 uintptr) {
r := realSyscallNoError(trap, a1, a2, a3, 0, 0, 0, 0, 0, 0)
return r, 0
}
func RawSyscall(trap, a1, a2, a3 uintptr) (r1, r2 uintptr, err syscall.Errno) {
r, errno := realSyscall(trap, a1, a2, a3, 0, 0, 0, 0, 0, 0)
return r, 0, syscall.Errno(errno)
}
func RawSyscall6(trap, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2 uintptr, err syscall.Errno) {
r, errno := realSyscall(trap, a1, a2, a3, a4, a5, a6, 0, 0, 0)
return r, 0, syscall.Errno(errno)
}

45
vendor/golang.org/x/sys/unix/gccgo_c.c generated vendored Normal file
View file

@ -0,0 +1,45 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build gccgo
// +build !aix
#include <errno.h>
#include <stdint.h>
#include <unistd.h>
#define _STRINGIFY2_(x) #x
#define _STRINGIFY_(x) _STRINGIFY2_(x)
#define GOSYM_PREFIX _STRINGIFY_(__USER_LABEL_PREFIX__)
// Call syscall from C code because the gccgo support for calling from
// Go to C does not support varargs functions.
struct ret {
uintptr_t r;
uintptr_t err;
};
struct ret gccgoRealSyscall(uintptr_t trap, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, uintptr_t a5, uintptr_t a6, uintptr_t a7, uintptr_t a8, uintptr_t a9)
__asm__(GOSYM_PREFIX GOPKGPATH ".realSyscall");
struct ret
gccgoRealSyscall(uintptr_t trap, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, uintptr_t a5, uintptr_t a6, uintptr_t a7, uintptr_t a8, uintptr_t a9)
{
struct ret r;
errno = 0;
r.r = syscall(trap, a1, a2, a3, a4, a5, a6, a7, a8, a9);
r.err = errno;
return r;
}
uintptr_t gccgoRealSyscallNoError(uintptr_t trap, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, uintptr_t a5, uintptr_t a6, uintptr_t a7, uintptr_t a8, uintptr_t a9)
__asm__(GOSYM_PREFIX GOPKGPATH ".realSyscallNoError");
uintptr_t
gccgoRealSyscallNoError(uintptr_t trap, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, uintptr_t a5, uintptr_t a6, uintptr_t a7, uintptr_t a8, uintptr_t a9)
{
return syscall(trap, a1, a2, a3, a4, a5, a6, a7, a8, a9);
}

21
vendor/golang.org/x/sys/unix/gccgo_linux_amd64.go generated vendored Normal file
View file

@ -0,0 +1,21 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build gccgo && linux && amd64
// +build gccgo,linux,amd64
package unix
import "syscall"
//extern gettimeofday
func realGettimeofday(*Timeval, *byte) int32
func gettimeofday(tv *Timeval) (err syscall.Errno) {
r := realGettimeofday(tv, nil)
if r < 0 {
return syscall.GetErrno()
}
return 0
}

142
vendor/golang.org/x/sys/unix/ifreq_linux.go generated vendored Normal file
View file

@ -0,0 +1,142 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build linux
// +build linux
package unix
import (
"unsafe"
)
// Helpers for dealing with ifreq since it contains a union and thus requires a
// lot of unsafe.Pointer casts to use properly.
// An Ifreq is a type-safe wrapper around the raw ifreq struct. An Ifreq
// contains an interface name and a union of arbitrary data which can be
// accessed using the Ifreq's methods. To create an Ifreq, use the NewIfreq
// function.
//
// Use the Name method to access the stored interface name. The union data
// fields can be get and set using the following methods:
// - Uint16/SetUint16: flags
// - Uint32/SetUint32: ifindex, metric, mtu
type Ifreq struct{ raw ifreq }
// NewIfreq creates an Ifreq with the input network interface name after
// validating the name does not exceed IFNAMSIZ-1 (trailing NULL required)
// bytes.
func NewIfreq(name string) (*Ifreq, error) {
// Leave room for terminating NULL byte.
if len(name) >= IFNAMSIZ {
return nil, EINVAL
}
var ifr ifreq
copy(ifr.Ifrn[:], name)
return &Ifreq{raw: ifr}, nil
}
// TODO(mdlayher): get/set methods for hardware address sockaddr, char array, etc.
// Name returns the interface name associated with the Ifreq.
func (ifr *Ifreq) Name() string {
return ByteSliceToString(ifr.raw.Ifrn[:])
}
// According to netdevice(7), only AF_INET addresses are returned for numerous
// sockaddr ioctls. For convenience, we expose these as Inet4Addr since the Port
// field and other data is always empty.
// Inet4Addr returns the Ifreq union data from an embedded sockaddr as a C
// in_addr/Go []byte (4-byte IPv4 address) value. If the sockaddr family is not
// AF_INET, an error is returned.
func (ifr *Ifreq) Inet4Addr() ([]byte, error) {
raw := *(*RawSockaddrInet4)(unsafe.Pointer(&ifr.raw.Ifru[:SizeofSockaddrInet4][0]))
if raw.Family != AF_INET {
// Cannot safely interpret raw.Addr bytes as an IPv4 address.
return nil, EINVAL
}
return raw.Addr[:], nil
}
// SetInet4Addr sets a C in_addr/Go []byte (4-byte IPv4 address) value in an
// embedded sockaddr within the Ifreq's union data. v must be 4 bytes in length
// or an error will be returned.
func (ifr *Ifreq) SetInet4Addr(v []byte) error {
if len(v) != 4 {
return EINVAL
}
var addr [4]byte
copy(addr[:], v)
ifr.clear()
*(*RawSockaddrInet4)(
unsafe.Pointer(&ifr.raw.Ifru[:SizeofSockaddrInet4][0]),
) = RawSockaddrInet4{
// Always set IP family as ioctls would require it anyway.
Family: AF_INET,
Addr: addr,
}
return nil
}
// Uint16 returns the Ifreq union data as a C short/Go uint16 value.
func (ifr *Ifreq) Uint16() uint16 {
return *(*uint16)(unsafe.Pointer(&ifr.raw.Ifru[:2][0]))
}
// SetUint16 sets a C short/Go uint16 value as the Ifreq's union data.
func (ifr *Ifreq) SetUint16(v uint16) {
ifr.clear()
*(*uint16)(unsafe.Pointer(&ifr.raw.Ifru[:2][0])) = v
}
// Uint32 returns the Ifreq union data as a C int/Go uint32 value.
func (ifr *Ifreq) Uint32() uint32 {
return *(*uint32)(unsafe.Pointer(&ifr.raw.Ifru[:4][0]))
}
// SetUint32 sets a C int/Go uint32 value as the Ifreq's union data.
func (ifr *Ifreq) SetUint32(v uint32) {
ifr.clear()
*(*uint32)(unsafe.Pointer(&ifr.raw.Ifru[:4][0])) = v
}
// clear zeroes the ifreq's union field to prevent trailing garbage data from
// being sent to the kernel if an ifreq is reused.
func (ifr *Ifreq) clear() {
for i := range ifr.raw.Ifru {
ifr.raw.Ifru[i] = 0
}
}
// TODO(mdlayher): export as IfreqData? For now we can provide helpers such as
// IoctlGetEthtoolDrvinfo which use these APIs under the hood.
// An ifreqData is an Ifreq which carries pointer data. To produce an ifreqData,
// use the Ifreq.withData method.
type ifreqData struct {
name [IFNAMSIZ]byte
// A type separate from ifreq is required in order to comply with the
// unsafe.Pointer rules since the "pointer-ness" of data would not be
// preserved if it were cast into the byte array of a raw ifreq.
data unsafe.Pointer
// Pad to the same size as ifreq.
_ [len(ifreq{}.Ifru) - SizeofPtr]byte
}
// withData produces an ifreqData with the pointer p set for ioctls which require
// arbitrary pointer data.
func (ifr Ifreq) withData(p unsafe.Pointer) ifreqData {
return ifreqData{
name: ifr.raw.Ifrn,
data: p,
}
}

75
vendor/golang.org/x/sys/unix/ioctl.go generated vendored Normal file
View file

@ -0,0 +1,75 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build aix || darwin || dragonfly || freebsd || linux || netbsd || openbsd || solaris
// +build aix darwin dragonfly freebsd linux netbsd openbsd solaris
package unix
import (
"runtime"
"unsafe"
)
// ioctl itself should not be exposed directly, but additional get/set
// functions for specific types are permissible.
// IoctlSetInt performs an ioctl operation which sets an integer value
// on fd, using the specified request number.
func IoctlSetInt(fd int, req uint, value int) error {
return ioctl(fd, req, uintptr(value))
}
// IoctlSetPointerInt performs an ioctl operation which sets an
// integer value on fd, using the specified request number. The ioctl
// argument is called with a pointer to the integer value, rather than
// passing the integer value directly.
func IoctlSetPointerInt(fd int, req uint, value int) error {
v := int32(value)
return ioctl(fd, req, uintptr(unsafe.Pointer(&v)))
}
// IoctlSetWinsize performs an ioctl on fd with a *Winsize argument.
//
// To change fd's window size, the req argument should be TIOCSWINSZ.
func IoctlSetWinsize(fd int, req uint, value *Winsize) error {
// TODO: if we get the chance, remove the req parameter and
// hardcode TIOCSWINSZ.
err := ioctl(fd, req, uintptr(unsafe.Pointer(value)))
runtime.KeepAlive(value)
return err
}
// IoctlSetTermios performs an ioctl on fd with a *Termios.
//
// The req value will usually be TCSETA or TIOCSETA.
func IoctlSetTermios(fd int, req uint, value *Termios) error {
// TODO: if we get the chance, remove the req parameter.
err := ioctl(fd, req, uintptr(unsafe.Pointer(value)))
runtime.KeepAlive(value)
return err
}
// IoctlGetInt performs an ioctl operation which gets an integer value
// from fd, using the specified request number.
//
// A few ioctl requests use the return value as an output parameter;
// for those, IoctlRetInt should be used instead of this function.
func IoctlGetInt(fd int, req uint) (int, error) {
var value int
err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
return value, err
}
func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
var value Winsize
err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
return &value, err
}
func IoctlGetTermios(fd int, req uint) (*Termios, error) {
var value Termios
err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
return &value, err
}

219
vendor/golang.org/x/sys/unix/ioctl_linux.go generated vendored Normal file
View file

@ -0,0 +1,219 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package unix
import (
"unsafe"
)
// IoctlRetInt performs an ioctl operation specified by req on a device
// associated with opened file descriptor fd, and returns a non-negative
// integer that is returned by the ioctl syscall.
func IoctlRetInt(fd int, req uint) (int, error) {
ret, _, err := Syscall(SYS_IOCTL, uintptr(fd), uintptr(req), 0)
if err != 0 {
return 0, err
}
return int(ret), nil
}
func IoctlGetUint32(fd int, req uint) (uint32, error) {
var value uint32
err := ioctlPtr(fd, req, unsafe.Pointer(&value))
return value, err
}
func IoctlGetRTCTime(fd int) (*RTCTime, error) {
var value RTCTime
err := ioctlPtr(fd, RTC_RD_TIME, unsafe.Pointer(&value))
return &value, err
}
func IoctlSetRTCTime(fd int, value *RTCTime) error {
return ioctlPtr(fd, RTC_SET_TIME, unsafe.Pointer(value))
}
func IoctlGetRTCWkAlrm(fd int) (*RTCWkAlrm, error) {
var value RTCWkAlrm
err := ioctlPtr(fd, RTC_WKALM_RD, unsafe.Pointer(&value))
return &value, err
}
func IoctlSetRTCWkAlrm(fd int, value *RTCWkAlrm) error {
return ioctlPtr(fd, RTC_WKALM_SET, unsafe.Pointer(value))
}
// IoctlGetEthtoolDrvinfo fetches ethtool driver information for the network
// device specified by ifname.
func IoctlGetEthtoolDrvinfo(fd int, ifname string) (*EthtoolDrvinfo, error) {
ifr, err := NewIfreq(ifname)
if err != nil {
return nil, err
}
value := EthtoolDrvinfo{Cmd: ETHTOOL_GDRVINFO}
ifrd := ifr.withData(unsafe.Pointer(&value))
err = ioctlIfreqData(fd, SIOCETHTOOL, &ifrd)
return &value, err
}
// IoctlGetWatchdogInfo fetches information about a watchdog device from the
// Linux watchdog API. For more information, see:
// https://www.kernel.org/doc/html/latest/watchdog/watchdog-api.html.
func IoctlGetWatchdogInfo(fd int) (*WatchdogInfo, error) {
var value WatchdogInfo
err := ioctlPtr(fd, WDIOC_GETSUPPORT, unsafe.Pointer(&value))
return &value, err
}
// IoctlWatchdogKeepalive issues a keepalive ioctl to a watchdog device. For
// more information, see:
// https://www.kernel.org/doc/html/latest/watchdog/watchdog-api.html.
func IoctlWatchdogKeepalive(fd int) error {
// arg is ignored and not a pointer, so ioctl is fine instead of ioctlPtr.
return ioctl(fd, WDIOC_KEEPALIVE, 0)
}
// IoctlFileCloneRange performs an FICLONERANGE ioctl operation to clone the
// range of data conveyed in value to the file associated with the file
// descriptor destFd. See the ioctl_ficlonerange(2) man page for details.
func IoctlFileCloneRange(destFd int, value *FileCloneRange) error {
return ioctlPtr(destFd, FICLONERANGE, unsafe.Pointer(value))
}
// IoctlFileClone performs an FICLONE ioctl operation to clone the entire file
// associated with the file description srcFd to the file associated with the
// file descriptor destFd. See the ioctl_ficlone(2) man page for details.
func IoctlFileClone(destFd, srcFd int) error {
return ioctl(destFd, FICLONE, uintptr(srcFd))
}
type FileDedupeRange struct {
Src_offset uint64
Src_length uint64
Reserved1 uint16
Reserved2 uint32
Info []FileDedupeRangeInfo
}
type FileDedupeRangeInfo struct {
Dest_fd int64
Dest_offset uint64
Bytes_deduped uint64
Status int32
Reserved uint32
}
// IoctlFileDedupeRange performs an FIDEDUPERANGE ioctl operation to share the
// range of data conveyed in value from the file associated with the file
// descriptor srcFd to the value.Info destinations. See the
// ioctl_fideduperange(2) man page for details.
func IoctlFileDedupeRange(srcFd int, value *FileDedupeRange) error {
buf := make([]byte, SizeofRawFileDedupeRange+
len(value.Info)*SizeofRawFileDedupeRangeInfo)
rawrange := (*RawFileDedupeRange)(unsafe.Pointer(&buf[0]))
rawrange.Src_offset = value.Src_offset
rawrange.Src_length = value.Src_length
rawrange.Dest_count = uint16(len(value.Info))
rawrange.Reserved1 = value.Reserved1
rawrange.Reserved2 = value.Reserved2
for i := range value.Info {
rawinfo := (*RawFileDedupeRangeInfo)(unsafe.Pointer(
uintptr(unsafe.Pointer(&buf[0])) + uintptr(SizeofRawFileDedupeRange) +
uintptr(i*SizeofRawFileDedupeRangeInfo)))
rawinfo.Dest_fd = value.Info[i].Dest_fd
rawinfo.Dest_offset = value.Info[i].Dest_offset
rawinfo.Bytes_deduped = value.Info[i].Bytes_deduped
rawinfo.Status = value.Info[i].Status
rawinfo.Reserved = value.Info[i].Reserved
}
err := ioctlPtr(srcFd, FIDEDUPERANGE, unsafe.Pointer(&buf[0]))
// Output
for i := range value.Info {
rawinfo := (*RawFileDedupeRangeInfo)(unsafe.Pointer(
uintptr(unsafe.Pointer(&buf[0])) + uintptr(SizeofRawFileDedupeRange) +
uintptr(i*SizeofRawFileDedupeRangeInfo)))
value.Info[i].Dest_fd = rawinfo.Dest_fd
value.Info[i].Dest_offset = rawinfo.Dest_offset
value.Info[i].Bytes_deduped = rawinfo.Bytes_deduped
value.Info[i].Status = rawinfo.Status
value.Info[i].Reserved = rawinfo.Reserved
}
return err
}
func IoctlHIDGetDesc(fd int, value *HIDRawReportDescriptor) error {
return ioctlPtr(fd, HIDIOCGRDESC, unsafe.Pointer(value))
}
func IoctlHIDGetRawInfo(fd int) (*HIDRawDevInfo, error) {
var value HIDRawDevInfo
err := ioctlPtr(fd, HIDIOCGRAWINFO, unsafe.Pointer(&value))
return &value, err
}
func IoctlHIDGetRawName(fd int) (string, error) {
var value [_HIDIOCGRAWNAME_LEN]byte
err := ioctlPtr(fd, _HIDIOCGRAWNAME, unsafe.Pointer(&value[0]))
return ByteSliceToString(value[:]), err
}
func IoctlHIDGetRawPhys(fd int) (string, error) {
var value [_HIDIOCGRAWPHYS_LEN]byte
err := ioctlPtr(fd, _HIDIOCGRAWPHYS, unsafe.Pointer(&value[0]))
return ByteSliceToString(value[:]), err
}
func IoctlHIDGetRawUniq(fd int) (string, error) {
var value [_HIDIOCGRAWUNIQ_LEN]byte
err := ioctlPtr(fd, _HIDIOCGRAWUNIQ, unsafe.Pointer(&value[0]))
return ByteSliceToString(value[:]), err
}
// IoctlIfreq performs an ioctl using an Ifreq structure for input and/or
// output. See the netdevice(7) man page for details.
func IoctlIfreq(fd int, req uint, value *Ifreq) error {
// It is possible we will add more fields to *Ifreq itself later to prevent
// misuse, so pass the raw *ifreq directly.
return ioctlPtr(fd, req, unsafe.Pointer(&value.raw))
}
// TODO(mdlayher): export if and when IfreqData is exported.
// ioctlIfreqData performs an ioctl using an ifreqData structure for input
// and/or output. See the netdevice(7) man page for details.
func ioctlIfreqData(fd int, req uint, value *ifreqData) error {
// The memory layout of IfreqData (type-safe) and ifreq (not type-safe) are
// identical so pass *IfreqData directly.
return ioctlPtr(fd, req, unsafe.Pointer(value))
}
// IoctlKCMClone attaches a new file descriptor to a multiplexor by cloning an
// existing KCM socket, returning a structure containing the file descriptor of
// the new socket.
func IoctlKCMClone(fd int) (*KCMClone, error) {
var info KCMClone
if err := ioctlPtr(fd, SIOCKCMCLONE, unsafe.Pointer(&info)); err != nil {
return nil, err
}
return &info, nil
}
// IoctlKCMAttach attaches a TCP socket and associated BPF program file
// descriptor to a multiplexor.
func IoctlKCMAttach(fd int, info KCMAttach) error {
return ioctlPtr(fd, SIOCKCMATTACH, unsafe.Pointer(&info))
}
// IoctlKCMUnattach unattaches a TCP socket file descriptor from a multiplexor.
func IoctlKCMUnattach(fd int, info KCMUnattach) error {
return ioctlPtr(fd, SIOCKCMUNATTACH, unsafe.Pointer(&info))
}

74
vendor/golang.org/x/sys/unix/ioctl_zos.go generated vendored Normal file
View file

@ -0,0 +1,74 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build zos && s390x
// +build zos,s390x
package unix
import (
"runtime"
"unsafe"
)
// ioctl itself should not be exposed directly, but additional get/set
// functions for specific types are permissible.
// IoctlSetInt performs an ioctl operation which sets an integer value
// on fd, using the specified request number.
func IoctlSetInt(fd int, req uint, value int) error {
return ioctl(fd, req, uintptr(value))
}
// IoctlSetWinsize performs an ioctl on fd with a *Winsize argument.
//
// To change fd's window size, the req argument should be TIOCSWINSZ.
func IoctlSetWinsize(fd int, req uint, value *Winsize) error {
// TODO: if we get the chance, remove the req parameter and
// hardcode TIOCSWINSZ.
err := ioctl(fd, req, uintptr(unsafe.Pointer(value)))
runtime.KeepAlive(value)
return err
}
// IoctlSetTermios performs an ioctl on fd with a *Termios.
//
// The req value is expected to be TCSETS, TCSETSW, or TCSETSF
func IoctlSetTermios(fd int, req uint, value *Termios) error {
if (req != TCSETS) && (req != TCSETSW) && (req != TCSETSF) {
return ENOSYS
}
err := Tcsetattr(fd, int(req), value)
runtime.KeepAlive(value)
return err
}
// IoctlGetInt performs an ioctl operation which gets an integer value
// from fd, using the specified request number.
//
// A few ioctl requests use the return value as an output parameter;
// for those, IoctlRetInt should be used instead of this function.
func IoctlGetInt(fd int, req uint) (int, error) {
var value int
err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
return value, err
}
func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
var value Winsize
err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
return &value, err
}
// IoctlGetTermios performs an ioctl on fd with a *Termios.
//
// The req value is expected to be TCGETS
func IoctlGetTermios(fd int, req uint) (*Termios, error) {
var value Termios
if req != TCGETS {
return &value, ENOSYS
}
err := Tcgetattr(fd, &value)
return &value, err
}

236
vendor/golang.org/x/sys/unix/mkall.sh generated vendored Normal file
View file

@ -0,0 +1,236 @@
#!/usr/bin/env bash
# Copyright 2009 The Go Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
# This script runs or (given -n) prints suggested commands to generate files for
# the Architecture/OS specified by the GOARCH and GOOS environment variables.
# See README.md for more information about how the build system works.
GOOSARCH="${GOOS}_${GOARCH}"
# defaults
mksyscall="go run mksyscall.go"
mkerrors="./mkerrors.sh"
zerrors="zerrors_$GOOSARCH.go"
mksysctl=""
zsysctl="zsysctl_$GOOSARCH.go"
mksysnum=
mktypes=
mkasm=
run="sh"
cmd=""
case "$1" in
-syscalls)
for i in zsyscall*go
do
# Run the command line that appears in the first line
# of the generated file to regenerate it.
sed 1q $i | sed 's;^// ;;' | sh > _$i && gofmt < _$i > $i
rm _$i
done
exit 0
;;
-n)
run="cat"
cmd="echo"
shift
esac
case "$#" in
0)
;;
*)
echo 'usage: mkall.sh [-n]' 1>&2
exit 2
esac
if [[ "$GOOS" = "linux" ]]; then
# Use the Docker-based build system
# Files generated through docker (use $cmd so you can Ctl-C the build or run)
$cmd docker build --tag generate:$GOOS $GOOS
$cmd docker run --interactive --tty --volume $(cd -- "$(dirname -- "$0")/.." && /bin/pwd):/build generate:$GOOS
exit
fi
GOOSARCH_in=syscall_$GOOSARCH.go
case "$GOOSARCH" in
_* | *_ | _)
echo 'undefined $GOOS_$GOARCH:' "$GOOSARCH" 1>&2
exit 1
;;
aix_ppc)
mkerrors="$mkerrors -maix32"
mksyscall="go run mksyscall_aix_ppc.go -aix"
mktypes="GOARCH=$GOARCH go tool cgo -godefs"
;;
aix_ppc64)
mkerrors="$mkerrors -maix64"
mksyscall="go run mksyscall_aix_ppc64.go -aix"
mktypes="GOARCH=$GOARCH go tool cgo -godefs"
;;
darwin_amd64)
mkerrors="$mkerrors -m64"
mktypes="GOARCH=$GOARCH go tool cgo -godefs"
mkasm="go run mkasm_darwin.go"
;;
darwin_arm64)
mkerrors="$mkerrors -m64"
mktypes="GOARCH=$GOARCH go tool cgo -godefs"
mkasm="go run mkasm_darwin.go"
;;
dragonfly_amd64)
mkerrors="$mkerrors -m64"
mksyscall="go run mksyscall.go -dragonfly"
mksysnum="go run mksysnum.go 'https://gitweb.dragonflybsd.org/dragonfly.git/blob_plain/HEAD:/sys/kern/syscalls.master'"
mktypes="GOARCH=$GOARCH go tool cgo -godefs"
;;
freebsd_386)
mkerrors="$mkerrors -m32"
mksyscall="go run mksyscall.go -l32"
mksysnum="go run mksysnum.go 'https://cgit.freebsd.org/src/plain/sys/kern/syscalls.master?h=stable/12'"
mktypes="GOARCH=$GOARCH go tool cgo -godefs"
;;
freebsd_amd64)
mkerrors="$mkerrors -m64"
mksysnum="go run mksysnum.go 'https://cgit.freebsd.org/src/plain/sys/kern/syscalls.master?h=stable/12'"
mktypes="GOARCH=$GOARCH go tool cgo -godefs"
;;
freebsd_arm)
mkerrors="$mkerrors"
mksyscall="go run mksyscall.go -l32 -arm"
mksysnum="go run mksysnum.go 'https://cgit.freebsd.org/src/plain/sys/kern/syscalls.master?h=stable/12'"
# Let the type of C char be signed for making the bare syscall
# API consistent across platforms.
mktypes="GOARCH=$GOARCH go tool cgo -godefs -- -fsigned-char"
;;
freebsd_arm64)
mkerrors="$mkerrors -m64"
mksysnum="go run mksysnum.go 'https://cgit.freebsd.org/src/plain/sys/kern/syscalls.master?h=stable/12'"
mktypes="GOARCH=$GOARCH go tool cgo -godefs -- -fsigned-char"
;;
freebsd_riscv64)
mkerrors="$mkerrors -m64"
mksysnum="go run mksysnum.go 'https://cgit.freebsd.org/src/plain/sys/kern/syscalls.master?h=stable/12'"
mktypes="GOARCH=$GOARCH go tool cgo -godefs -- -fsigned-char"
;;
netbsd_386)
mkerrors="$mkerrors -m32"
mksyscall="go run mksyscall.go -l32 -netbsd"
mksysnum="go run mksysnum.go 'http://cvsweb.netbsd.org/bsdweb.cgi/~checkout~/src/sys/kern/syscalls.master'"
mktypes="GOARCH=$GOARCH go tool cgo -godefs"
;;
netbsd_amd64)
mkerrors="$mkerrors -m64"
mksyscall="go run mksyscall.go -netbsd"
mksysnum="go run mksysnum.go 'http://cvsweb.netbsd.org/bsdweb.cgi/~checkout~/src/sys/kern/syscalls.master'"
mktypes="GOARCH=$GOARCH go tool cgo -godefs"
;;
netbsd_arm)
mkerrors="$mkerrors"
mksyscall="go run mksyscall.go -l32 -netbsd -arm"
mksysnum="go run mksysnum.go 'http://cvsweb.netbsd.org/bsdweb.cgi/~checkout~/src/sys/kern/syscalls.master'"
# Let the type of C char be signed for making the bare syscall
# API consistent across platforms.
mktypes="GOARCH=$GOARCH go tool cgo -godefs -- -fsigned-char"
;;
netbsd_arm64)
mkerrors="$mkerrors -m64"
mksyscall="go run mksyscall.go -netbsd"
mksysnum="go run mksysnum.go 'http://cvsweb.netbsd.org/bsdweb.cgi/~checkout~/src/sys/kern/syscalls.master'"
mktypes="GOARCH=$GOARCH go tool cgo -godefs"
;;
openbsd_386)
mkerrors="$mkerrors -m32"
mksyscall="go run mksyscall.go -l32 -openbsd"
mksysctl="go run mksysctl_openbsd.go"
mksysnum="go run mksysnum.go 'https://cvsweb.openbsd.org/cgi-bin/cvsweb/~checkout~/src/sys/kern/syscalls.master'"
mktypes="GOARCH=$GOARCH go tool cgo -godefs"
;;
openbsd_amd64)
mkerrors="$mkerrors -m64"
mksyscall="go run mksyscall.go -openbsd"
mksysctl="go run mksysctl_openbsd.go"
mksysnum="go run mksysnum.go 'https://cvsweb.openbsd.org/cgi-bin/cvsweb/~checkout~/src/sys/kern/syscalls.master'"
mktypes="GOARCH=$GOARCH go tool cgo -godefs"
;;
openbsd_arm)
mkerrors="$mkerrors"
mksyscall="go run mksyscall.go -l32 -openbsd -arm"
mksysctl="go run mksysctl_openbsd.go"
mksysnum="go run mksysnum.go 'https://cvsweb.openbsd.org/cgi-bin/cvsweb/~checkout~/src/sys/kern/syscalls.master'"
# Let the type of C char be signed for making the bare syscall
# API consistent across platforms.
mktypes="GOARCH=$GOARCH go tool cgo -godefs -- -fsigned-char"
;;
openbsd_arm64)
mkerrors="$mkerrors -m64"
mksyscall="go run mksyscall.go -openbsd"
mksysctl="go run mksysctl_openbsd.go"
mksysnum="go run mksysnum.go 'https://cvsweb.openbsd.org/cgi-bin/cvsweb/~checkout~/src/sys/kern/syscalls.master'"
# Let the type of C char be signed for making the bare syscall
# API consistent across platforms.
mktypes="GOARCH=$GOARCH go tool cgo -godefs -- -fsigned-char"
;;
openbsd_mips64)
mkerrors="$mkerrors -m64"
mksyscall="go run mksyscall.go -openbsd"
mksysctl="go run mksysctl_openbsd.go"
mksysnum="go run mksysnum.go 'https://cvsweb.openbsd.org/cgi-bin/cvsweb/~checkout~/src/sys/kern/syscalls.master'"
# Let the type of C char be signed for making the bare syscall
# API consistent across platforms.
mktypes="GOARCH=$GOARCH go tool cgo -godefs -- -fsigned-char"
;;
solaris_amd64)
mksyscall="go run mksyscall_solaris.go"
mkerrors="$mkerrors -m64"
mksysnum=
mktypes="GOARCH=$GOARCH go tool cgo -godefs"
;;
illumos_amd64)
mksyscall="go run mksyscall_solaris.go"
mkerrors=
mksysnum=
mktypes="GOARCH=$GOARCH go tool cgo -godefs"
;;
*)
echo 'unrecognized $GOOS_$GOARCH: ' "$GOOSARCH" 1>&2
exit 1
;;
esac
(
if [ -n "$mkerrors" ]; then echo "$mkerrors |gofmt >$zerrors"; fi
case "$GOOS" in
*)
syscall_goos="syscall_$GOOS.go"
case "$GOOS" in
darwin | dragonfly | freebsd | netbsd | openbsd)
syscall_goos="syscall_bsd.go $syscall_goos"
;;
esac
if [ -n "$mksyscall" ]; then
if [ "$GOOSARCH" == "aix_ppc64" ]; then
# aix/ppc64 script generates files instead of writing to stdin.
echo "$mksyscall -tags $GOOS,$GOARCH $syscall_goos $GOOSARCH_in && gofmt -w zsyscall_$GOOSARCH.go && gofmt -w zsyscall_"$GOOSARCH"_gccgo.go && gofmt -w zsyscall_"$GOOSARCH"_gc.go " ;
elif [ "$GOOS" == "darwin" ]; then
# 1.12 and later, syscalls via libSystem
echo "$mksyscall -tags $GOOS,$GOARCH,go1.12 $syscall_goos $GOOSARCH_in |gofmt >zsyscall_$GOOSARCH.go";
# 1.13 and later, syscalls via libSystem (including syscallPtr)
echo "$mksyscall -tags $GOOS,$GOARCH,go1.13 syscall_darwin.1_13.go |gofmt >zsyscall_$GOOSARCH.1_13.go";
elif [ "$GOOS" == "illumos" ]; then
# illumos code generation requires a --illumos switch
echo "$mksyscall -illumos -tags illumos,$GOARCH syscall_illumos.go |gofmt > zsyscall_illumos_$GOARCH.go";
# illumos implies solaris, so solaris code generation is also required
echo "$mksyscall -tags solaris,$GOARCH syscall_solaris.go syscall_solaris_$GOARCH.go |gofmt >zsyscall_solaris_$GOARCH.go";
else
echo "$mksyscall -tags $GOOS,$GOARCH $syscall_goos $GOOSARCH_in |gofmt >zsyscall_$GOOSARCH.go";
fi
fi
esac
if [ -n "$mksysctl" ]; then echo "$mksysctl |gofmt >$zsysctl"; fi
if [ -n "$mksysnum" ]; then echo "$mksysnum |gofmt >zsysnum_$GOOSARCH.go"; fi
if [ -n "$mktypes" ]; then echo "$mktypes types_$GOOS.go | go run mkpost.go > ztypes_$GOOSARCH.go"; fi
if [ -n "$mkasm" ]; then echo "$mkasm $GOARCH"; fi
) | $run

774
vendor/golang.org/x/sys/unix/mkerrors.sh generated vendored Normal file
View file

@ -0,0 +1,774 @@
#!/usr/bin/env bash
# Copyright 2009 The Go Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
# Generate Go code listing errors and other #defined constant
# values (ENAMETOOLONG etc.), by asking the preprocessor
# about the definitions.
unset LANG
export LC_ALL=C
export LC_CTYPE=C
if test -z "$GOARCH" -o -z "$GOOS"; then
echo 1>&2 "GOARCH or GOOS not defined in environment"
exit 1
fi
# Check that we are using the new build system if we should
if [[ "$GOOS" = "linux" ]] && [[ "$GOLANG_SYS_BUILD" != "docker" ]]; then
echo 1>&2 "In the Docker based build system, mkerrors should not be called directly."
echo 1>&2 "See README.md"
exit 1
fi
if [[ "$GOOS" = "aix" ]]; then
CC=${CC:-gcc}
else
CC=${CC:-cc}
fi
if [[ "$GOOS" = "solaris" ]]; then
# Assumes GNU versions of utilities in PATH.
export PATH=/usr/gnu/bin:$PATH
fi
uname=$(uname)
includes_AIX='
#include <net/if.h>
#include <net/netopt.h>
#include <netinet/ip_mroute.h>
#include <sys/protosw.h>
#include <sys/stropts.h>
#include <sys/mman.h>
#include <sys/poll.h>
#include <sys/select.h>
#include <sys/termio.h>
#include <termios.h>
#include <fcntl.h>
#define AF_LOCAL AF_UNIX
'
includes_Darwin='
#define _DARWIN_C_SOURCE
#define KERNEL 1
#define _DARWIN_USE_64_BIT_INODE
#define __APPLE_USE_RFC_3542
#include <stdint.h>
#include <sys/attr.h>
#include <sys/clonefile.h>
#include <sys/kern_control.h>
#include <sys/types.h>
#include <sys/event.h>
#include <sys/ptrace.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/sockio.h>
#include <sys/sys_domain.h>
#include <sys/sysctl.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/utsname.h>
#include <sys/wait.h>
#include <sys/xattr.h>
#include <sys/vsock.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <termios.h>
// for backwards compatibility because moved TIOCREMOTE to Kernel.framework after MacOSX12.0.sdk.
#define TIOCREMOTE 0x80047469
'
includes_DragonFly='
#include <sys/types.h>
#include <sys/event.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/wait.h>
#include <sys/ioctl.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_clone.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <termios.h>
#include <netinet/ip.h>
#include <net/ip_mroute/ip_mroute.h>
'
includes_FreeBSD='
#include <sys/capsicum.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/disk.h>
#include <sys/event.h>
#include <sys/sched.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/sockio.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/wait.h>
#include <sys/ioctl.h>
#include <sys/ptrace.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <termios.h>
#include <netinet/ip.h>
#include <netinet/ip_mroute.h>
#include <sys/extattr.h>
#if __FreeBSD__ >= 10
#define IFT_CARP 0xf8 // IFT_CARP is deprecated in FreeBSD 10
#undef SIOCAIFADDR
#define SIOCAIFADDR _IOW(105, 26, struct oifaliasreq) // ifaliasreq contains if_data
#undef SIOCSIFPHYADDR
#define SIOCSIFPHYADDR _IOW(105, 70, struct oifaliasreq) // ifaliasreq contains if_data
#endif
'
includes_Linux='
#define _LARGEFILE_SOURCE
#define _LARGEFILE64_SOURCE
#ifndef __LP64__
#define _FILE_OFFSET_BITS 64
#endif
#define _GNU_SOURCE
// <sys/ioctl.h> is broken on powerpc64, as it fails to include definitions of
// these structures. We just include them copied from <bits/termios.h>.
#if defined(__powerpc__)
struct sgttyb {
char sg_ispeed;
char sg_ospeed;
char sg_erase;
char sg_kill;
short sg_flags;
};
struct tchars {
char t_intrc;
char t_quitc;
char t_startc;
char t_stopc;
char t_eofc;
char t_brkc;
};
struct ltchars {
char t_suspc;
char t_dsuspc;
char t_rprntc;
char t_flushc;
char t_werasc;
char t_lnextc;
};
#endif
#include <bits/sockaddr.h>
#include <sys/epoll.h>
#include <sys/eventfd.h>
#include <sys/inotify.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/prctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/select.h>
#include <sys/signalfd.h>
#include <sys/socket.h>
#include <sys/timerfd.h>
#include <sys/uio.h>
#include <sys/xattr.h>
#include <linux/audit.h>
#include <linux/bpf.h>
#include <linux/can.h>
#include <linux/can/error.h>
#include <linux/can/netlink.h>
#include <linux/can/raw.h>
#include <linux/capability.h>
#include <linux/cryptouser.h>
#include <linux/devlink.h>
#include <linux/dm-ioctl.h>
#include <linux/errqueue.h>
#include <linux/ethtool_netlink.h>
#include <linux/falloc.h>
#include <linux/fanotify.h>
#include <linux/fib_rules.h>
#include <linux/filter.h>
#include <linux/fs.h>
#include <linux/fscrypt.h>
#include <linux/fsverity.h>
#include <linux/genetlink.h>
#include <linux/hdreg.h>
#include <linux/hidraw.h>
#include <linux/if.h>
#include <linux/if_addr.h>
#include <linux/if_alg.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/if_ppp.h>
#include <linux/if_tun.h>
#include <linux/if_packet.h>
#include <linux/if_xdp.h>
#include <linux/input.h>
#include <linux/kcm.h>
#include <linux/kexec.h>
#include <linux/keyctl.h>
#include <linux/landlock.h>
#include <linux/loop.h>
#include <linux/lwtunnel.h>
#include <linux/magic.h>
#include <linux/memfd.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/netfilter/nfnetlink.h>
#include <linux/netlink.h>
#include <linux/net_namespace.h>
#include <linux/nfc.h>
#include <linux/nsfs.h>
#include <linux/perf_event.h>
#include <linux/pps.h>
#include <linux/ptrace.h>
#include <linux/random.h>
#include <linux/reboot.h>
#include <linux/rtc.h>
#include <linux/rtnetlink.h>
#include <linux/sched.h>
#include <linux/seccomp.h>
#include <linux/serial.h>
#include <linux/sockios.h>
#include <linux/taskstats.h>
#include <linux/tipc.h>
#include <linux/vm_sockets.h>
#include <linux/wait.h>
#include <linux/watchdog.h>
#include <linux/wireguard.h>
#include <mtd/ubi-user.h>
#include <mtd/mtd-user.h>
#include <net/route.h>
#if defined(__sparc__)
// On sparc{,64}, the kernel defines struct termios2 itself which clashes with the
// definition in glibc. As only the error constants are needed here, include the
// generic termibits.h (which is included by termbits.h on sparc).
#include <asm-generic/termbits.h>
#else
#include <asm/termbits.h>
#endif
#ifndef MSG_FASTOPEN
#define MSG_FASTOPEN 0x20000000
#endif
#ifndef PTRACE_GETREGS
#define PTRACE_GETREGS 0xc
#endif
#ifndef PTRACE_SETREGS
#define PTRACE_SETREGS 0xd
#endif
#ifndef SOL_NETLINK
#define SOL_NETLINK 270
#endif
#ifdef SOL_BLUETOOTH
// SPARC includes this in /usr/include/sparc64-linux-gnu/bits/socket.h
// but it is already in bluetooth_linux.go
#undef SOL_BLUETOOTH
#endif
// Certain constants are missing from the fs/crypto UAPI
#define FS_KEY_DESC_PREFIX "fscrypt:"
#define FS_KEY_DESC_PREFIX_SIZE 8
#define FS_MAX_KEY_SIZE 64
// The code generator produces -0x1 for (~0), but an unsigned value is necessary
// for the tipc_subscr timeout __u32 field.
#undef TIPC_WAIT_FOREVER
#define TIPC_WAIT_FOREVER 0xffffffff
// Copied from linux/l2tp.h
// Including linux/l2tp.h here causes conflicts between linux/in.h
// and netinet/in.h included via net/route.h above.
#define IPPROTO_L2TP 115
// Copied from linux/hid.h.
// Keep in sync with the size of the referenced fields.
#define _HIDIOCGRAWNAME_LEN 128 // sizeof_field(struct hid_device, name)
#define _HIDIOCGRAWPHYS_LEN 64 // sizeof_field(struct hid_device, phys)
#define _HIDIOCGRAWUNIQ_LEN 64 // sizeof_field(struct hid_device, uniq)
#define _HIDIOCGRAWNAME HIDIOCGRAWNAME(_HIDIOCGRAWNAME_LEN)
#define _HIDIOCGRAWPHYS HIDIOCGRAWPHYS(_HIDIOCGRAWPHYS_LEN)
#define _HIDIOCGRAWUNIQ HIDIOCGRAWUNIQ(_HIDIOCGRAWUNIQ_LEN)
'
includes_NetBSD='
#include <sys/types.h>
#include <sys/param.h>
#include <sys/event.h>
#include <sys/extattr.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/sched.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/termios.h>
#include <sys/ttycom.h>
#include <sys/wait.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_mroute.h>
#include <netinet/if_ether.h>
// Needed since <sys/param.h> refers to it...
#define schedppq 1
'
includes_OpenBSD='
#include <sys/types.h>
#include <sys/param.h>
#include <sys/event.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/select.h>
#include <sys/sched.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/termios.h>
#include <sys/ttycom.h>
#include <sys/unistd.h>
#include <sys/wait.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_mroute.h>
#include <netinet/if_ether.h>
#include <net/if_bridge.h>
// We keep some constants not supported in OpenBSD 5.5 and beyond for
// the promise of compatibility.
#define EMUL_ENABLED 0x1
#define EMUL_NATIVE 0x2
#define IPV6_FAITH 0x1d
#define IPV6_OPTIONS 0x1
#define IPV6_RTHDR_STRICT 0x1
#define IPV6_SOCKOPT_RESERVED1 0x3
#define SIOCGIFGENERIC 0xc020693a
#define SIOCSIFGENERIC 0x80206939
#define WALTSIG 0x4
'
includes_SunOS='
#include <limits.h>
#include <sys/types.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/stat.h>
#include <sys/stream.h>
#include <sys/mman.h>
#include <sys/wait.h>
#include <sys/ioctl.h>
#include <sys/mkdev.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/icmp6.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip_mroute.h>
#include <termios.h>
'
includes='
#include <sys/types.h>
#include <sys/file.h>
#include <fcntl.h>
#include <dirent.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <errno.h>
#include <sys/signal.h>
#include <signal.h>
#include <sys/resource.h>
#include <time.h>
'
ccflags="$@"
# Write go tool cgo -godefs input.
(
echo package unix
echo
echo '/*'
indirect="includes_$(uname)"
echo "${!indirect} $includes"
echo '*/'
echo 'import "C"'
echo 'import "syscall"'
echo
echo 'const ('
# The gcc command line prints all the #defines
# it encounters while processing the input
echo "${!indirect} $includes" | $CC -x c - -E -dM $ccflags |
awk '
$1 != "#define" || $2 ~ /\(/ || $3 == "" {next}
$2 ~ /^E([ABCD]X|[BIS]P|[SD]I|S|FL)$/ {next} # 386 registers
$2 ~ /^(SIGEV_|SIGSTKSZ|SIGRT(MIN|MAX))/ {next}
$2 ~ /^(SCM_SRCRT)$/ {next}
$2 ~ /^(MAP_FAILED)$/ {next}
$2 ~ /^ELF_.*$/ {next}# <asm/elf.h> contains ELF_ARCH, etc.
$2 ~ /^EXTATTR_NAMESPACE_NAMES/ ||
$2 ~ /^EXTATTR_NAMESPACE_[A-Z]+_STRING/ {next}
$2 !~ /^ECCAPBITS/ &&
$2 !~ /^ETH_/ &&
$2 !~ /^EPROC_/ &&
$2 !~ /^EQUIV_/ &&
$2 !~ /^EXPR_/ &&
$2 !~ /^EVIOC/ &&
$2 ~ /^E[A-Z0-9_]+$/ ||
$2 ~ /^B[0-9_]+$/ ||
$2 ~ /^(OLD|NEW)DEV$/ ||
$2 == "BOTHER" ||
$2 ~ /^CI?BAUD(EX)?$/ ||
$2 == "IBSHIFT" ||
$2 ~ /^V[A-Z0-9]+$/ ||
$2 ~ /^CS[A-Z0-9]/ ||
$2 ~ /^I(SIG|CANON|CRNL|UCLC|EXTEN|MAXBEL|STRIP|UTF8)$/ ||
$2 ~ /^IGN/ ||
$2 ~ /^IX(ON|ANY|OFF)$/ ||
$2 ~ /^IN(LCR|PCK)$/ ||
$2 !~ "X86_CR3_PCID_NOFLUSH" &&
$2 ~ /(^FLU?SH)|(FLU?SH$)/ ||
$2 ~ /^C(LOCAL|READ|MSPAR|RTSCTS)$/ ||
$2 == "BRKINT" ||
$2 == "HUPCL" ||
$2 == "PENDIN" ||
$2 == "TOSTOP" ||
$2 == "XCASE" ||
$2 == "ALTWERASE" ||
$2 == "NOKERNINFO" ||
$2 == "NFDBITS" ||
$2 ~ /^PAR/ ||
$2 ~ /^SIG[^_]/ ||
$2 ~ /^O[CNPFPL][A-Z]+[^_][A-Z]+$/ ||
$2 ~ /^(NL|CR|TAB|BS|VT|FF)DLY$/ ||
$2 ~ /^(NL|CR|TAB|BS|VT|FF)[0-9]$/ ||
$2 ~ /^O?XTABS$/ ||
$2 ~ /^TC[IO](ON|OFF)$/ ||
$2 ~ /^IN_/ ||
$2 ~ /^KCM/ ||
$2 ~ /^LANDLOCK_/ ||
$2 ~ /^LOCK_(SH|EX|NB|UN)$/ ||
$2 ~ /^LO_(KEY|NAME)_SIZE$/ ||
$2 ~ /^LOOP_(CLR|CTL|GET|SET)_/ ||
$2 ~ /^(AF|SOCK|SO|SOL|IPPROTO|IP|IPV6|TCP|MCAST|EVFILT|NOTE|SHUT|PROT|MAP|MFD|T?PACKET|MSG|SCM|MCL|DT|MADV|PR|LOCAL|TCPOPT)_/ ||
$2 ~ /^NFC_(GENL|PROTO|COMM|RF|SE|DIRECTION|LLCP|SOCKPROTO)_/ ||
$2 ~ /^NFC_.*_(MAX)?SIZE$/ ||
$2 ~ /^RAW_PAYLOAD_/ ||
$2 ~ /^TP_STATUS_/ ||
$2 ~ /^FALLOC_/ ||
$2 ~ /^ICMPV?6?_(FILTER|SEC)/ ||
$2 == "SOMAXCONN" ||
$2 == "NAME_MAX" ||
$2 == "IFNAMSIZ" ||
$2 ~ /^CTL_(HW|KERN|MAXNAME|NET|QUERY)$/ ||
$2 ~ /^KERN_(HOSTNAME|OS(RELEASE|TYPE)|VERSION)$/ ||
$2 ~ /^HW_MACHINE$/ ||
$2 ~ /^SYSCTL_VERS/ ||
$2 !~ "MNT_BITS" &&
$2 ~ /^(MS|MNT|MOUNT|UMOUNT)_/ ||
$2 ~ /^NS_GET_/ ||
$2 ~ /^TUN(SET|GET|ATTACH|DETACH)/ ||
$2 ~ /^(O|F|[ES]?FD|NAME|S|PTRACE|PT|PIOD|TFD)_/ ||
$2 ~ /^KEXEC_/ ||
$2 ~ /^LINUX_REBOOT_CMD_/ ||
$2 ~ /^LINUX_REBOOT_MAGIC[12]$/ ||
$2 ~ /^MODULE_INIT_/ ||
$2 !~ "NLA_TYPE_MASK" &&
$2 !~ /^RTC_VL_(ACCURACY|BACKUP|DATA)/ &&
$2 ~ /^(NETLINK|NLM|NLMSG|NLA|IFA|IFAN|RT|RTC|RTCF|RTN|RTPROT|RTNH|ARPHRD|ETH_P|NETNSA)_/ ||
$2 ~ /^FIORDCHK$/ ||
$2 ~ /^SIOC/ ||
$2 ~ /^TIOC/ ||
$2 ~ /^TCGET/ ||
$2 ~ /^TCSET/ ||
$2 ~ /^TC(FLSH|SBRKP?|XONC)$/ ||
$2 !~ "RTF_BITS" &&
$2 ~ /^(IFF|IFT|NET_RT|RTM(GRP)?|RTF|RTV|RTA|RTAX)_/ ||
$2 ~ /^BIOC/ ||
$2 ~ /^DIOC/ ||
$2 ~ /^RUSAGE_(SELF|CHILDREN|THREAD)/ ||
$2 ~ /^RLIMIT_(AS|CORE|CPU|DATA|FSIZE|LOCKS|MEMLOCK|MSGQUEUE|NICE|NOFILE|NPROC|RSS|RTPRIO|RTTIME|SIGPENDING|STACK)|RLIM_INFINITY/ ||
$2 ~ /^PRIO_(PROCESS|PGRP|USER)/ ||
$2 ~ /^CLONE_[A-Z_]+/ ||
$2 !~ /^(BPF_TIMEVAL|BPF_FIB_LOOKUP_[A-Z]+)$/ &&
$2 ~ /^(BPF|DLT)_/ ||
$2 ~ /^AUDIT_/ ||
$2 ~ /^(CLOCK|TIMER)_/ ||
$2 ~ /^CAN_/ ||
$2 ~ /^CAP_/ ||
$2 ~ /^CP_/ ||
$2 ~ /^CPUSTATES$/ ||
$2 ~ /^CTLIOCGINFO$/ ||
$2 ~ /^ALG_/ ||
$2 ~ /^FI(CLONE|DEDUPERANGE)/ ||
$2 ~ /^FS_(POLICY_FLAGS|KEY_DESC|ENCRYPTION_MODE|[A-Z0-9_]+_KEY_SIZE)/ ||
$2 ~ /^FS_IOC_.*(ENCRYPTION|VERITY|[GS]ETFLAGS)/ ||
$2 ~ /^FS_VERITY_/ ||
$2 ~ /^FSCRYPT_/ ||
$2 ~ /^DM_/ ||
$2 ~ /^GRND_/ ||
$2 ~ /^RND/ ||
$2 ~ /^KEY_(SPEC|REQKEY_DEFL)_/ ||
$2 ~ /^KEYCTL_/ ||
$2 ~ /^PERF_/ ||
$2 ~ /^SECCOMP_MODE_/ ||
$2 ~ /^SEEK_/ ||
$2 ~ /^SPLICE_/ ||
$2 ~ /^SYNC_FILE_RANGE_/ ||
$2 !~ /IOC_MAGIC/ &&
$2 ~ /^[A-Z][A-Z0-9_]+_MAGIC2?$/ ||
$2 ~ /^(VM|VMADDR)_/ ||
$2 ~ /^IOCTL_VM_SOCKETS_/ ||
$2 ~ /^(TASKSTATS|TS)_/ ||
$2 ~ /^CGROUPSTATS_/ ||
$2 ~ /^GENL_/ ||
$2 ~ /^STATX_/ ||
$2 ~ /^RENAME/ ||
$2 ~ /^UBI_IOC[A-Z]/ ||
$2 ~ /^UTIME_/ ||
$2 ~ /^XATTR_(CREATE|REPLACE|NO(DEFAULT|FOLLOW|SECURITY)|SHOWCOMPRESSION)/ ||
$2 ~ /^ATTR_(BIT_MAP_COUNT|(CMN|VOL|FILE)_)/ ||
$2 ~ /^FSOPT_/ ||
$2 ~ /^WDIO[CFS]_/ ||
$2 ~ /^NFN/ ||
$2 ~ /^XDP_/ ||
$2 ~ /^RWF_/ ||
$2 ~ /^(HDIO|WIN|SMART)_/ ||
$2 ~ /^CRYPTO_/ ||
$2 ~ /^TIPC_/ ||
$2 !~ "DEVLINK_RELOAD_LIMITS_VALID_MASK" &&
$2 ~ /^DEVLINK_/ ||
$2 ~ /^ETHTOOL_/ ||
$2 ~ /^LWTUNNEL_IP/ ||
$2 ~ /^ITIMER_/ ||
$2 !~ "WMESGLEN" &&
$2 ~ /^W[A-Z0-9]+$/ ||
$2 ~ /^P_/ ||
$2 ~/^PPPIOC/ ||
$2 ~ /^FAN_|FANOTIFY_/ ||
$2 == "HID_MAX_DESCRIPTOR_SIZE" ||
$2 ~ /^_?HIDIOC/ ||
$2 ~ /^BUS_(USB|HIL|BLUETOOTH|VIRTUAL)$/ ||
$2 ~ /^MTD/ ||
$2 ~ /^OTP/ ||
$2 ~ /^MEM/ ||
$2 ~ /^WG/ ||
$2 ~ /^FIB_RULE_/ ||
$2 ~ /^BLK[A-Z]*(GET$|SET$|BUF$|PART$|SIZE)/ {printf("\t%s = C.%s\n", $2, $2)}
$2 ~ /^__WCOREFLAG$/ {next}
$2 ~ /^__W[A-Z0-9]+$/ {printf("\t%s = C.%s\n", substr($2,3), $2)}
{next}
' | sort
echo ')'
) >_const.go
# Pull out the error names for later.
errors=$(
echo '#include <errno.h>' | $CC -x c - -E -dM $ccflags |
awk '$1=="#define" && $2 ~ /^E[A-Z0-9_]+$/ { print $2 }' |
sort
)
# Pull out the signal names for later.
signals=$(
echo '#include <signal.h>' | $CC -x c - -E -dM $ccflags |
awk '$1=="#define" && $2 ~ /^SIG[A-Z0-9]+$/ { print $2 }' |
egrep -v '(SIGSTKSIZE|SIGSTKSZ|SIGRT|SIGMAX64)' |
sort
)
# Again, writing regexps to a file.
echo '#include <errno.h>' | $CC -x c - -E -dM $ccflags |
awk '$1=="#define" && $2 ~ /^E[A-Z0-9_]+$/ { print "^\t" $2 "[ \t]*=" }' |
sort >_error.grep
echo '#include <signal.h>' | $CC -x c - -E -dM $ccflags |
awk '$1=="#define" && $2 ~ /^SIG[A-Z0-9]+$/ { print "^\t" $2 "[ \t]*=" }' |
egrep -v '(SIGSTKSIZE|SIGSTKSZ|SIGRT|SIGMAX64)' |
sort >_signal.grep
echo '// mkerrors.sh' "$@"
echo '// Code generated by the command above; see README.md. DO NOT EDIT.'
echo
echo "//go:build ${GOARCH} && ${GOOS}"
echo "// +build ${GOARCH},${GOOS}"
echo
go tool cgo -godefs -- "$@" _const.go >_error.out
cat _error.out | grep -vf _error.grep | grep -vf _signal.grep
echo
echo '// Errors'
echo 'const ('
cat _error.out | grep -f _error.grep | sed 's/=\(.*\)/= syscall.Errno(\1)/'
echo ')'
echo
echo '// Signals'
echo 'const ('
cat _error.out | grep -f _signal.grep | sed 's/=\(.*\)/= syscall.Signal(\1)/'
echo ')'
# Run C program to print error and syscall strings.
(
echo -E "
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <ctype.h>
#include <string.h>
#include <signal.h>
#define nelem(x) (sizeof(x)/sizeof((x)[0]))
enum { A = 'A', Z = 'Z', a = 'a', z = 'z' }; // avoid need for single quotes below
struct tuple {
int num;
const char *name;
};
struct tuple errors[] = {
"
for i in $errors
do
echo -E ' {'$i', "'$i'" },'
done
echo -E "
};
struct tuple signals[] = {
"
for i in $signals
do
echo -E ' {'$i', "'$i'" },'
done
# Use -E because on some systems bash builtin interprets \n itself.
echo -E '
};
static int
tuplecmp(const void *a, const void *b)
{
return ((struct tuple *)a)->num - ((struct tuple *)b)->num;
}
int
main(void)
{
int i, e;
char buf[1024], *p;
printf("\n\n// Error table\n");
printf("var errorList = [...]struct {\n");
printf("\tnum syscall.Errno\n");
printf("\tname string\n");
printf("\tdesc string\n");
printf("} {\n");
qsort(errors, nelem(errors), sizeof errors[0], tuplecmp);
for(i=0; i<nelem(errors); i++) {
e = errors[i].num;
if(i > 0 && errors[i-1].num == e)
continue;
strcpy(buf, strerror(e));
// lowercase first letter: Bad -> bad, but STREAM -> STREAM.
if(A <= buf[0] && buf[0] <= Z && a <= buf[1] && buf[1] <= z)
buf[0] += a - A;
printf("\t{ %d, \"%s\", \"%s\" },\n", e, errors[i].name, buf);
}
printf("}\n\n");
printf("\n\n// Signal table\n");
printf("var signalList = [...]struct {\n");
printf("\tnum syscall.Signal\n");
printf("\tname string\n");
printf("\tdesc string\n");
printf("} {\n");
qsort(signals, nelem(signals), sizeof signals[0], tuplecmp);
for(i=0; i<nelem(signals); i++) {
e = signals[i].num;
if(i > 0 && signals[i-1].num == e)
continue;
strcpy(buf, strsignal(e));
// lowercase first letter: Bad -> bad, but STREAM -> STREAM.
if(A <= buf[0] && buf[0] <= Z && a <= buf[1] && buf[1] <= z)
buf[0] += a - A;
// cut trailing : number.
p = strrchr(buf, ":"[0]);
if(p)
*p = '\0';
printf("\t{ %d, \"%s\", \"%s\" },\n", e, signals[i].name, buf);
}
printf("}\n\n");
return 0;
}
'
) >_errors.c
$CC $ccflags -o _errors _errors.c && $GORUN ./_errors && rm -f _errors.c _errors _const.go _error.grep _signal.grep _error.out

16
vendor/golang.org/x/sys/unix/pagesize_unix.go generated vendored Normal file
View file

@ -0,0 +1,16 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build aix || darwin || dragonfly || freebsd || linux || netbsd || openbsd || solaris
// +build aix darwin dragonfly freebsd linux netbsd openbsd solaris
// For Unix, get the pagesize from the runtime.
package unix
import "syscall"
func Getpagesize() int {
return syscall.Getpagesize()
}

163
vendor/golang.org/x/sys/unix/pledge_openbsd.go generated vendored Normal file
View file

@ -0,0 +1,163 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package unix
import (
"errors"
"fmt"
"strconv"
"syscall"
"unsafe"
)
// Pledge implements the pledge syscall.
//
// The pledge syscall does not accept execpromises on OpenBSD releases
// before 6.3.
//
// execpromises must be empty when Pledge is called on OpenBSD
// releases predating 6.3, otherwise an error will be returned.
//
// For more information see pledge(2).
func Pledge(promises, execpromises string) error {
maj, min, err := majmin()
if err != nil {
return err
}
err = pledgeAvailable(maj, min, execpromises)
if err != nil {
return err
}
pptr, err := syscall.BytePtrFromString(promises)
if err != nil {
return err
}
// This variable will hold either a nil unsafe.Pointer or
// an unsafe.Pointer to a string (execpromises).
var expr unsafe.Pointer
// If we're running on OpenBSD > 6.2, pass execpromises to the syscall.
if maj > 6 || (maj == 6 && min > 2) {
exptr, err := syscall.BytePtrFromString(execpromises)
if err != nil {
return err
}
expr = unsafe.Pointer(exptr)
}
_, _, e := syscall.Syscall(SYS_PLEDGE, uintptr(unsafe.Pointer(pptr)), uintptr(expr), 0)
if e != 0 {
return e
}
return nil
}
// PledgePromises implements the pledge syscall.
//
// This changes the promises and leaves the execpromises untouched.
//
// For more information see pledge(2).
func PledgePromises(promises string) error {
maj, min, err := majmin()
if err != nil {
return err
}
err = pledgeAvailable(maj, min, "")
if err != nil {
return err
}
// This variable holds the execpromises and is always nil.
var expr unsafe.Pointer
pptr, err := syscall.BytePtrFromString(promises)
if err != nil {
return err
}
_, _, e := syscall.Syscall(SYS_PLEDGE, uintptr(unsafe.Pointer(pptr)), uintptr(expr), 0)
if e != 0 {
return e
}
return nil
}
// PledgeExecpromises implements the pledge syscall.
//
// This changes the execpromises and leaves the promises untouched.
//
// For more information see pledge(2).
func PledgeExecpromises(execpromises string) error {
maj, min, err := majmin()
if err != nil {
return err
}
err = pledgeAvailable(maj, min, execpromises)
if err != nil {
return err
}
// This variable holds the promises and is always nil.
var pptr unsafe.Pointer
exptr, err := syscall.BytePtrFromString(execpromises)
if err != nil {
return err
}
_, _, e := syscall.Syscall(SYS_PLEDGE, uintptr(pptr), uintptr(unsafe.Pointer(exptr)), 0)
if e != 0 {
return e
}
return nil
}
// majmin returns major and minor version number for an OpenBSD system.
func majmin() (major int, minor int, err error) {
var v Utsname
err = Uname(&v)
if err != nil {
return
}
major, err = strconv.Atoi(string(v.Release[0]))
if err != nil {
err = errors.New("cannot parse major version number returned by uname")
return
}
minor, err = strconv.Atoi(string(v.Release[2]))
if err != nil {
err = errors.New("cannot parse minor version number returned by uname")
return
}
return
}
// pledgeAvailable checks for availability of the pledge(2) syscall
// based on the running OpenBSD version.
func pledgeAvailable(maj, min int, execpromises string) error {
// If OpenBSD <= 5.9, pledge is not available.
if (maj == 5 && min != 9) || maj < 5 {
return fmt.Errorf("pledge syscall is not available on OpenBSD %d.%d", maj, min)
}
// If OpenBSD <= 6.2 and execpromises is not empty,
// return an error - execpromises is not available before 6.3
if (maj < 6 || (maj == 6 && min <= 2)) && execpromises != "" {
return fmt.Errorf("cannot use execpromises on OpenBSD %d.%d", maj, min)
}
return nil
}

12
vendor/golang.org/x/sys/unix/ptrace_darwin.go generated vendored Normal file
View file

@ -0,0 +1,12 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build darwin && !ios
// +build darwin,!ios
package unix
func ptrace(request int, pid int, addr uintptr, data uintptr) error {
return ptrace1(request, pid, addr, data)
}

12
vendor/golang.org/x/sys/unix/ptrace_ios.go generated vendored Normal file
View file

@ -0,0 +1,12 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build ios
// +build ios
package unix
func ptrace(request int, pid int, addr uintptr, data uintptr) (err error) {
return ENOTSUP
}

31
vendor/golang.org/x/sys/unix/race.go generated vendored Normal file
View file

@ -0,0 +1,31 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build (darwin && race) || (linux && race) || (freebsd && race)
// +build darwin,race linux,race freebsd,race
package unix
import (
"runtime"
"unsafe"
)
const raceenabled = true
func raceAcquire(addr unsafe.Pointer) {
runtime.RaceAcquire(addr)
}
func raceReleaseMerge(addr unsafe.Pointer) {
runtime.RaceReleaseMerge(addr)
}
func raceReadRange(addr unsafe.Pointer, len int) {
runtime.RaceReadRange(addr, len)
}
func raceWriteRange(addr unsafe.Pointer, len int) {
runtime.RaceWriteRange(addr, len)
}

26
vendor/golang.org/x/sys/unix/race0.go generated vendored Normal file
View file

@ -0,0 +1,26 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build aix || (darwin && !race) || (linux && !race) || (freebsd && !race) || netbsd || openbsd || solaris || dragonfly || zos
// +build aix darwin,!race linux,!race freebsd,!race netbsd openbsd solaris dragonfly zos
package unix
import (
"unsafe"
)
const raceenabled = false
func raceAcquire(addr unsafe.Pointer) {
}
func raceReleaseMerge(addr unsafe.Pointer) {
}
func raceReadRange(addr unsafe.Pointer, len int) {
}
func raceWriteRange(addr unsafe.Pointer, len int) {
}

13
vendor/golang.org/x/sys/unix/readdirent_getdents.go generated vendored Normal file
View file

@ -0,0 +1,13 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build aix || dragonfly || freebsd || linux || netbsd || openbsd
// +build aix dragonfly freebsd linux netbsd openbsd
package unix
// ReadDirent reads directory entries from fd and writes them into buf.
func ReadDirent(fd int, buf []byte) (n int, err error) {
return Getdents(fd, buf)
}

View file

@ -0,0 +1,20 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build darwin
// +build darwin
package unix
import "unsafe"
// ReadDirent reads directory entries from fd and writes them into buf.
func ReadDirent(fd int, buf []byte) (n int, err error) {
// Final argument is (basep *uintptr) and the syscall doesn't take nil.
// 64 bits should be enough. (32 bits isn't even on 386). Since the
// actual system call is getdirentries64, 64 is a good guess.
// TODO(rsc): Can we use a single global basep for all calls?
var base = (*uintptr)(unsafe.Pointer(new(uint64)))
return Getdirentries(fd, buf, base)
}

Some files were not shown because too many files have changed in this diff Show more